Social-Media-KI-Assistent – Telegram
Experte
Dies ist ein AI, Marketing-Bereich Automatisierungsworkflow mit 26 Nodes. Hauptsächlich werden Code, Wait, Merge, Filter, Twitter und andere Nodes verwendet, kombiniert mit KI-Technologie für intelligente Automatisierung. AI-basierter Social-Media-Verstärker
Voraussetzungen
- •Twitter API-Anmeldedaten
- •Airtable API Key
- •LinkedIn API-Anmeldedaten
- •Telegram Bot Token
- •Möglicherweise sind Ziel-API-Anmeldedaten erforderlich
- •OpenAI API Key
Verwendete Nodes (26)
Kategorie
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
"id": "ZeSJSbwXI593H1Qj",
"meta": {
"instanceId": "8e1a7e3413df437923cda0e92c098469371d84f7001856e525beaff17be8b941",
"templateCredsSetupCompleted": true
},
"name": "Social Media AI Agent - Telegram",
"tags": [],
"nodes": [
{
"id": "814303e0-5fe9-474e-a4ed-e4a728fd4acf",
"name": "HN-Startseite crawlen",
"type": "n8n-nodes-base.httpRequest",
"position": [
-1540,
1640
],
"parameters": {
"url": "https://news.ycombinator.com/",
"options": {
"response": {
"response": {
"neverError": true,
"fullResponse": true
}
}
}
},
"executeOnce": true,
"typeVersion": 4.2,
"alwaysOutputData": true
},
{
"id": "32e20b1d-b3f1-4ed2-acbf-4d5bd56b0d8b",
"name": "Metadaten extrahieren",
"type": "n8n-nodes-base.code",
"position": [
-1260,
1720
],
"parameters": {
"language": "python",
"pythonCode": "# Import necessary modules\nimport asyncio\nimport micropip\n\n# Define an asynchronous function to install packages\nasync def install_packages():\n await micropip.install(\"beautifulsoup4\")\n await micropip.install(\"simplejson\")\n\n# Run the asynchronous package installation\nasyncio.get_event_loop().run_until_complete(install_packages())\n\n# Now, import the installed packages\nimport simplejson as json\nfrom bs4 import BeautifulSoup\n\n# Retrieve the HTML content from the first item in the input\n# Assuming n8n passes data as a list of items, each with a 'json' key\nhtml_content = items[0].get('json', {}).get('data', '')\n\n# Initialize BeautifulSoup with the HTML content\nsoup = BeautifulSoup(html_content, 'html.parser')\n\n# Initialize a list to store metadata of GitHub posts\ngithub_posts = []\n\n# Find all 'tr' elements with class 'athing submission'\nposts = soup.find_all('tr', class_='athing submission')\n\nfor post in posts:\n post_id = post.get('id')\n title_line = post.find('span', class_='titleline')\n if not title_line:\n continue # Skip if titleline is not found\n\n # Extract the title and URL\n title_tag = title_line.find('a')\n if not title_tag:\n continue # Skip if title tag is not found\n\n title = title_tag.get_text(strip=True)\n url = title_tag.get('href', '')\n\n # Check if the URL is a GitHub link\n if 'github.com' not in url.lower():\n continue # Skip if not a GitHub link\n\n # Extract the site domain (e.g., github.com/username/repo)\n site_bit = title_line.find('span', class_='sitebit comhead')\n site = site_bit.find('span', class_='sitestr').get_text(strip=True) if site_bit else ''\n\n # The subtext is in the next 'tr' element\n subtext_tr = post.find_next_sibling('tr')\n if not subtext_tr:\n continue # Skip if subtext row is not found\n\n subtext_td = subtext_tr.find('td', class_='subtext')\n if not subtext_td:\n continue # Skip if subtext td is not found\n\n # Extract score\n score_span = subtext_td.find('span', class_='score')\n score = score_span.get_text(strip=True) if score_span else '0 points'\n\n # Extract author\n author_a = subtext_td.find('a', class_='hnuser')\n author = author_a.get_text(strip=True) if author_a else 'unknown'\n\n # Extract age\n age_span = subtext_td.find('span', class_='age')\n age_a = age_span.find('a') if age_span else None\n age = age_a.get_text(strip=True) if age_a else 'unknown'\n\n # Extract comments\n comments_a = subtext_td.find_all('a')[-1] if subtext_td.find_all('a') else None\n comments_text = comments_a.get_text(strip=True) if comments_a else '0 comments'\n\n # Construct the Hacker News URL\n hn_url = f\"https://news.ycombinator.com/item?id={post_id}\"\n\n # Compile the metadata\n post_metadata = {\n 'Post': post_id,\n 'title': title,\n 'url': url,\n 'site': site,\n 'score': score,\n 'author': author,\n 'age': age,\n 'comments': comments_text,\n 'hn_url': hn_url\n }\n\n # Append to the list of GitHub posts\n github_posts.append(post_metadata)\n\n# Prepare the output for n8n\noutput = [{'json': post} for post in github_posts]\n\n# Return the output\nreturn output\n"
},
"executeOnce": true,
"typeVersion": 2,
"alwaysOutputData": true
},
{
"id": "b54cf663-b823-4613-a812-764942b95b9d",
"name": "Ungepostete Einträge filtern",
"type": "n8n-nodes-base.code",
"position": [
-680,
1640
],
"parameters": {
"jsCode": "const items = [];\n\n// Step 1: Collect all Post IDs from input1 items (those with 'id')\nconst processedPosts = new Set(\n $input.all()\n .filter(item => item.json.id)\n .map(item => item.json.Post)\n);\n\n// Step 2: Iterate over all items and filter out duplicates\nfor (const item of $input.all()) {\n \n // Only process items without 'id' (input2 items)\n if(!item.json.id){\n \n // Check if the Post ID is already processed\n if(!processedPosts.has(item.json.Post) && item.json.Post!=undefined){\n items.push(item);\n }\n }\n}\n\nreturn items;\n"
},
"typeVersion": 2
},
{
"id": "d7ac7121-8da7-4e45-9b74-daf07fbf15fb",
"name": "GH-Seite besuchen",
"type": "n8n-nodes-base.httpRequest",
"position": [
-420,
1420
],
"parameters": {
"url": "={{ $json.url }}",
"options": {}
},
"typeVersion": 4.2
},
{
"id": "f156ca8e-7963-42b9-9612-9ab5efc53be4",
"name": "HTML zu Markdown konvertieren",
"type": "n8n-nodes-base.markdown",
"position": [
-240,
1700
],
"parameters": {
"html": "={{ $json.data }}",
"options": {}
},
"typeVersion": 1,
"alwaysOutputData": true
},
{
"id": "86221ed0-29fa-4775-ba36-8ffdf614977c",
"name": "Fehlerhafte filtern",
"type": "n8n-nodes-base.filter",
"position": [
380,
1440
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "7776cb97-e02d-418e-a168-612bf92d4160",
"operator": {
"type": "string",
"operation": "empty",
"singleValue": true
},
"leftValue": "={{ $json.error }}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "f08c4f61-17a5-4899-ab3d-4e3ff5d1b8b7",
"name": "No Operation, nichts tun",
"type": "n8n-nodes-base.noOp",
"position": [
1760,
1540
],
"parameters": {},
"typeVersion": 1
},
{
"id": "48856b3b-a951-4e7f-a0b8-410a71e9b0a7",
"name": "X-Status aktualisieren",
"type": "n8n-nodes-base.airtable",
"position": [
1500,
1400
],
"parameters": {
"base": {
"__rl": true,
"mode": "list",
"value": "app7fh2kmMzPKS4RZ",
"cachedResultUrl": "https://airtable.com/app7fh2kmMzPKS4RZ",
"cachedResultName": "Twitter Agent"
},
"table": {
"__rl": true,
"mode": "list",
"value": "tblf0cODJFdvDj7vU",
"cachedResultUrl": "https://airtable.com/app7fh2kmMzPKS4RZ/tblf0cODJFdvDj7vU",
"cachedResultName": "My Tweets"
},
"columns": {
"value": {
"id": "={{ $('Create Item').item.json.id }}",
"TDone": true
},
"schema": [
{
"id": "id",
"type": "string",
"display": true,
"removed": false,
"readOnly": true,
"required": false,
"displayName": "id",
"defaultMatch": true
},
{
"id": "Post",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "Post",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Title",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "Title",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Url",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "Url",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Tweet",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "Tweet",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "LinkedIn",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "LinkedIn",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Date",
"type": "string",
"display": true,
"removed": true,
"readOnly": true,
"required": false,
"displayName": "Date",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Last Modified",
"type": "string",
"display": true,
"removed": true,
"readOnly": true,
"required": false,
"displayName": "Last Modified",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "TDone",
"type": "boolean",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "TDone",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "LDone",
"type": "boolean",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "LDone",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"id"
]
},
"options": {
"typecast": true
},
"operation": "update"
},
"credentials": {
"airtableTokenApi": {
"id": "BxLldDZTAZvuWVbr",
"name": "Airtable Personal Access Token account"
}
},
"typeVersion": 2.1
},
{
"id": "c31bb906-2a0d-406a-a7cd-6fc4adfcb67b",
"name": "LinkedIn",
"type": "n8n-nodes-base.linkedIn",
"position": [
1200,
1820
],
"parameters": {
"text": "={{ $('Filter Errored').item.json.message.content.linkedin }}",
"person": "afi4Hy9wlI",
"additionalFields": {}
},
"credentials": {
"linkedInOAuth2Api": {
"id": "S7G2oyLAmzhWuYFQ",
"name": "LinkedIn account"
}
},
"typeVersion": 1
},
{
"id": "4aab4cc2-4a51-432a-aa21-ba469c027ac6",
"name": "L-Status aktualisieren",
"type": "n8n-nodes-base.airtable",
"position": [
1520,
1680
],
"parameters": {
"base": {
"__rl": true,
"mode": "list",
"value": "app7fh2kmMzPKS4RZ",
"cachedResultUrl": "https://airtable.com/app7fh2kmMzPKS4RZ",
"cachedResultName": "Twitter Agent"
},
"table": {
"__rl": true,
"mode": "list",
"value": "tblf0cODJFdvDj7vU",
"cachedResultUrl": "https://airtable.com/app7fh2kmMzPKS4RZ/tblf0cODJFdvDj7vU",
"cachedResultName": "My Tweets"
},
"columns": {
"value": {
"id": "={{ $('Create Item').item.json.id }}",
"LDone": true
},
"schema": [
{
"id": "id",
"type": "string",
"display": true,
"removed": false,
"readOnly": true,
"required": false,
"displayName": "id",
"defaultMatch": true
},
{
"id": "Post",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "Post",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Title",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "Title",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Url",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "Url",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Tweet",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "Tweet",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "LinkedIn",
"type": "string",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "LinkedIn",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Date",
"type": "string",
"display": true,
"removed": true,
"readOnly": true,
"required": false,
"displayName": "Date",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Last Modified",
"type": "string",
"display": true,
"removed": true,
"readOnly": true,
"required": false,
"displayName": "Last Modified",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "TDone",
"type": "boolean",
"display": true,
"removed": true,
"readOnly": false,
"required": false,
"displayName": "TDone",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "LDone",
"type": "boolean",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "LDone",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"id"
]
},
"options": {
"typecast": true
},
"operation": "update"
},
"credentials": {
"airtableTokenApi": {
"id": "BxLldDZTAZvuWVbr",
"name": "Airtable Personal Access Token account"
}
},
"typeVersion": 2.1
},
{
"id": "72dd9714-c11d-4417-8710-89e416ac44c9",
"name": "Eintrag suchen",
"type": "n8n-nodes-base.airtable",
"position": [
-1100,
1240
],
"parameters": {
"base": {
"__rl": true,
"mode": "list",
"value": "app7fh2kmMzPKS4RZ",
"cachedResultUrl": "https://airtable.com/app7fh2kmMzPKS4RZ",
"cachedResultName": "Twitter Agent"
},
"table": {
"__rl": true,
"mode": "list",
"value": "tblf0cODJFdvDj7vU",
"cachedResultUrl": "https://airtable.com/app7fh2kmMzPKS4RZ/tblf0cODJFdvDj7vU",
"cachedResultName": "My Tweets"
},
"options": {
"fields": [
"Title",
"Url",
"Tweet",
"Date",
"Post"
]
},
"operation": "search",
"filterByFormula": "={Post}= {{ $json.Post }}"
},
"credentials": {
"airtableTokenApi": {
"id": "BxLldDZTAZvuWVbr",
"name": "Airtable Personal Access Token account"
}
},
"typeVersion": 2.1,
"alwaysOutputData": true
},
{
"id": "f89fbada-0e53-44f0-a09b-119869fabd10",
"name": "Eintrag erstellen",
"type": "n8n-nodes-base.airtable",
"position": [
580,
1660
],
"parameters": {
"base": {
"__rl": true,
"mode": "list",
"value": "app7fh2kmMzPKS4RZ",
"cachedResultUrl": "https://airtable.com/app7fh2kmMzPKS4RZ",
"cachedResultName": "Twitter Agent"
},
"table": {
"__rl": true,
"mode": "list",
"value": "tblf0cODJFdvDj7vU",
"cachedResultUrl": "https://airtable.com/app7fh2kmMzPKS4RZ/tblf0cODJFdvDj7vU",
"cachedResultName": "My Tweets"
},
"columns": {
"value": {
"Url": "={{ $('Filter Unposted Items').item.json.url }}",
"Post": "={{ $('Filter Unposted Items').item.json.Post }}",
"Title": "={{ $('Filter Unposted Items').item.json.title }}",
"Tweet": "={{ $json.message.content.twitter }}",
"LinkedIn": "={{ $json.message.content.linkedin }}"
},
"schema": [
{
"id": "Post",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Post",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Title",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Title",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Url",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Url",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Tweet",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Tweet",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "LinkedIn",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "LinkedIn",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Date",
"type": "string",
"display": true,
"removed": false,
"readOnly": true,
"required": false,
"displayName": "Date",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": []
},
"options": {},
"operation": "create"
},
"credentials": {
"airtableTokenApi": {
"id": "BxLldDZTAZvuWVbr",
"name": "Airtable Personal Access Token account"
}
},
"typeVersion": 2.1
},
{
"id": "51a2c3d3-3e75-4375-b2b6-4bb86fa71855",
"name": "X",
"type": "n8n-nodes-base.twitter",
"onError": "continueRegularOutput",
"position": [
1180,
1380
],
"parameters": {
"text": "={{ $('Filter Errored').item.json.message.content.twitter }}",
"additionalFields": {}
},
"credentials": {
"twitterOAuth2Api": {
"id": "YQyS9lQTpZtZkefS",
"name": "X account"
}
},
"executeOnce": false,
"typeVersion": 2
},
{
"id": "58869c5b-9fb2-4f76-8788-68056cda45b0",
"name": "Generierte Inhalte validieren",
"type": "n8n-nodes-base.code",
"onError": "continueRegularOutput",
"position": [
180,
1680
],
"parameters": {
"mode": "runOnceForEachItem",
"jsCode": "if ($json.message.content.twitter && $json.message.content.linkedin) {\n \n return $json;\n} else {\n\n const parsedContent = JSON.parse($json.message.content);\n if ($json.message.content.twitter && $json.message.content.linkedin) {\n return parsedContent;\n }\n\n console.log(\"Invalid formatting\")\n return {}\n}"
},
"typeVersion": 2
},
{
"id": "527fd640-8bc8-4043-92a6-52fbea8de63f",
"name": "Zeitgesteuerter Trigger",
"type": "n8n-nodes-base.scheduleTrigger",
"position": [
-1780,
1640
],
"parameters": {
"rule": {
"interval": [
{
"field": "hours",
"hoursInterval": 6
}
]
}
},
"typeVersion": 1.2
},
{
"id": "f00c1de5-d5bd-4d78-8717-d26dd739adc7",
"name": "Zusammenführen",
"type": "n8n-nodes-base.merge",
"position": [
-840,
1420
],
"parameters": {},
"typeVersion": 3,
"alwaysOutputData": true
},
{
"id": "3529fba4-173c-4378-ae69-43a3bae0813f",
"name": "Inhalte generieren",
"type": "@n8n/n8n-nodes-langchain.openAi",
"position": [
-120,
1440
],
"parameters": {
"modelId": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini",
"cachedResultName": "GPT-4O-MINI"
},
"options": {},
"messages": {
"values": [
{
"role": "system",
"content": "You are an AI-powered social media assistant specialized in crafting short-form, engaging posts for Twitter and LinkedIn. Your tone should blend the enthusiasm of a Tech Evangelist with the narrative depth of a Storyteller. The goal is to highlight technological and open-source projects in a friendly, forward-thinking manner, connecting them to real-world use cases. \n\nGuidelines:\n1. Output must be in JSON with separate fields for “twitter” and “linkedin.”\n2. Do not include emojis or marketing buzzwords (“cutting-edge,” “disruptive,” etc.).\n3. Write naturally and concisely. Avoid overly formal or robotic language.\n4. Twitter posts must be under 280 characters (including spaces and URL).\n5. LinkedIn posts should be slightly longer, yet still succinct, and focus on storytelling and real-world applications.\n6. Provide a single call-to-action in each post.\n7. Do not imply ownership of the project unless explicitly stated.\n8. Maintain a professional yet approachable tone in both outputs.\n"
},
{
"content": "=Using the following details, generate two posts—one for Twitter and one for LinkedIn—incorporating an enthusiastic yet narrative-driven style:\n\nTitle: {{ $('Filter Unposted Items').item.json.title }}\nDetails in markdown: {{ $json.data }}\nRepository Link: {{ $('Filter Unposted Items').item.json.url }} (this is the actual link you want to be inserted)\n\nConstraints:\n- No emojis.\n- Keep the Twitter post under 280 characters (including the link).\n- Use a friendly, forward-thinking tone that weaves in a short narrative where possible.\n- Highlight how the project solves a real problem or benefits the user.\n- End each post with one clear CTA (e.g., “Check it out!” or “Learn more.”).\n- **Ensure the tone is neutral and does not imply personal involvement** (e.g., avoid phrases like \"my journey\" or \"I found it fascinating\").\n- **LinkedIn post should be more detailed**: Provide context, explain the key features, highlight how it can be useful to different audiences, and elaborate on the problem it solves or the impact it can have.\n- Output your response in JSON with the structure:\n```json\n{\n \"twitter\": \"Your Twitter post here\",\n \"linkedin\": \"Your LinkedIn post here\"\n}\n"
}
]
},
"jsonOutput": true
},
"credentials": {
"openAiApi": {
"id": "IfJo4dG8AUORk6f0",
"name": "OpenAi account"
}
},
"typeVersion": 1.7,
"alwaysOutputData": true
},
{
"id": "2dfd7849-877c-4bd3-b248-94140a1fe209",
"name": "Notizzettel",
"type": "n8n-nodes-base.stickyNote",
"position": [
-320,
960
],
"parameters": {
"width": 619.8433261701165,
"height": 97.20332107671479,
"content": "Automate the curation and sharing of trending GitHub discussions from Hacker News to Twitter and LinkedIn. This workflow leverages AI to generate engaging posts, streamlining your social media content creation and distribution.\n\n"
},
"typeVersion": 1
},
{
"id": "20704a99-1234-46dc-b8c8-860b051b3b85",
"name": "Notizzettel1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1620,
1520
],
"parameters": {
"color": 5,
"width": 524.8824946275869,
"height": 420.37647358435385,
"content": "I crawl Hacker News and extract Github links."
},
"typeVersion": 1
},
{
"id": "5cfa2c30-6c88-429a-8b5f-0034d2352cc2",
"name": "Notizzettel2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-480,
1280
],
"parameters": {
"color": 5,
"width": 828.144505037599,
"height": 670.031562962293,
"content": "This is where the magic happens. I use the Github url extracted earlier and visit Github page to get more insights in the project being shared. Then I ask Chat GPT very nicely to help me get a Tweet and a LinkedIn post"
},
"typeVersion": 1
},
{
"id": "caec3df6-ddcc-4959-94e1-18163cf3128f",
"name": "Notizzettel3",
"type": "n8n-nodes-base.stickyNote",
"position": [
1100,
1280
],
"parameters": {
"color": 5,
"width": 285.9487894560623,
"height": 751.2077576680031,
"content": "One last magic trick, Send the generated Tweet and the post to the respective platforms."
},
"typeVersion": 1
},
{
"id": "89c8472d-3329-4f94-a656-2539e061eeb0",
"name": "Mich benachrichtigen",
"type": "n8n-nodes-base.telegram",
"position": [
720,
1420
],
"parameters": {
"text": "=Hi There, here is your readymade tweet - \n\n {{ $json.fields.Tweet }}\n\nAnd your readymade LinkedIn post -\n\n {{ $json.fields.LinkedIn }}\n\n",
"chatId": "1297549992",
"additionalFields": {}
},
"credentials": {
"telegramApi": {
"id": "1RZApQ3BwJxFn9jp",
"name": "Telegram account"
}
},
"typeVersion": 1.2
},
{
"id": "b1444e6d-0cab-4082-af42-a8decc97d9b4",
"name": "Notizzettel4",
"type": "n8n-nodes-base.stickyNote",
"position": [
640,
1300
],
"parameters": {
"color": 5,
"width": 264.5060210432334,
"height": 307.03612625939974,
"content": "Just pinging the owner that something is about to be posted and wait for 5 mins before final posting."
},
"typeVersion": 1
},
{
"id": "01c2f7ff-ff6c-4a60-9581-f8c5f3985792",
"name": "5 Minuten vor Posting warten",
"type": "n8n-nodes-base.wait",
"position": [
880,
1660
],
"webhookId": "0c7ee388-30cf-4a99-9bb0-0fd85171c794",
"parameters": {
"unit": "minutes"
},
"typeVersion": 1.1
},
{
"id": "909c7e7d-ea84-4612-a322-b1fa889b2efb",
"name": "Notizzettel5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-920,
1380
],
"parameters": {
"width": 400.8207630962184,
"height": 392.80719991071624,
"content": "CHORE"
},
"typeVersion": 1
},
{
"id": "04ab5b63-8def-4d49-9360-596261eb051c",
"name": "Notizzettel6",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1140,
1140
],
"parameters": {
"color": 5,
"width": 195.58283685913963,
"height": 285.5933578465706,
"content": "Make sure we don't post the same content again."
},
"typeVersion": 1
}
],
"active": true,
"pinData": {
"Schedule Trigger": [
{
"json": {
"Hour": "18",
"Year": "2024",
"Month": "December",
"Minute": "00",
"Second": "17",
"Timezone": "America/New_York (UTC-05:00)",
"timestamp": "2024-12-27T18:00:17.035-05:00",
"Day of week": "Friday",
"Day of month": "27",
"Readable date": "December 27th 2024, 6:00:17 pm",
"Readable time": "6:00:17 pm"
}
}
]
},
"settings": {
"executionOrder": "v1"
},
"versionId": "4c28d47d-811e-4b89-adeb-47da12abd378",
"connections": {
"51a2c3d3-3e75-4375-b2b6-4bb86fa71855": {
"main": [
[
{
"node": "48856b3b-a951-4e7f-a0b8-410a71e9b0a7",
"type": "main",
"index": 0
}
]
]
},
"f00c1de5-d5bd-4d78-8717-d26dd739adc7": {
"main": [
[
{
"node": "b54cf663-b823-4613-a812-764942b95b9d",
"type": "main",
"index": 0
}
]
]
},
"89c8472d-3329-4f94-a656-2539e061eeb0": {
"main": [
[
{
"node": "01c2f7ff-ff6c-4a60-9581-f8c5f3985792",
"type": "main",
"index": 0
}
]
]
},
"c31bb906-2a0d-406a-a7cd-6fc4adfcb67b": {
"main": [
[
{
"node": "4aab4cc2-4a51-432a-aa21-ba469c027ac6",
"type": "main",
"index": 0
}
]
]
},
"f89fbada-0e53-44f0-a09b-119869fabd10": {
"main": [
[
{
"node": "89c8472d-3329-4f94-a656-2539e061eeb0",
"type": "main",
"index": 0
}
]
]
},
"72dd9714-c11d-4417-8710-89e416ac44c9": {
"main": [
[
{
"node": "f00c1de5-d5bd-4d78-8717-d26dd739adc7",
"type": "main",
"index": 0
}
]
]
},
"32e20b1d-b3f1-4ed2-acbf-4d5bd56b0d8b": {
"main": [
[
{
"node": "72dd9714-c11d-4417-8710-89e416ac44c9",
"type": "main",
"index": 0
},
{
"node": "f00c1de5-d5bd-4d78-8717-d26dd739adc7",
"type": "main",
"index": 1
}
]
]
},
"814303e0-5fe9-474e-a4ed-e4a728fd4acf": {
"main": [
[
{
"node": "32e20b1d-b3f1-4ed2-acbf-4d5bd56b0d8b",
"type": "main",
"index": 0
}
]
]
},
"d7ac7121-8da7-4e45-9b74-daf07fbf15fb": {
"main": [
[
{
"node": "f156ca8e-7963-42b9-9612-9ab5efc53be4",
"type": "main",
"index": 0
}
]
]
},
"86221ed0-29fa-4775-ba36-8ffdf614977c": {
"main": [
[
{
"node": "f89fbada-0e53-44f0-a09b-119869fabd10",
"type": "main",
"index": 0
}
]
]
},
"4aab4cc2-4a51-432a-aa21-ba469c027ac6": {
"main": [
[
{
"node": "f08c4f61-17a5-4899-ab3d-4e3ff5d1b8b7",
"type": "main",
"index": 0
}
]
]
},
"48856b3b-a951-4e7f-a0b8-410a71e9b0a7": {
"main": [
[
{
"node": "f08c4f61-17a5-4899-ab3d-4e3ff5d1b8b7",
"type": "main",
"index": 0
}
]
]
},
"3529fba4-173c-4378-ae69-43a3bae0813f": {
"main": [
[
{
"node": "58869c5b-9fb2-4f76-8788-68056cda45b0",
"type": "main",
"index": 0
}
]
]
},
"527fd640-8bc8-4043-92a6-52fbea8de63f": {
"main": [
[
{
"node": "814303e0-5fe9-474e-a4ed-e4a728fd4acf",
"type": "main",
"index": 0
}
]
]
},
"b54cf663-b823-4613-a812-764942b95b9d": {
"main": [
[
{
"node": "d7ac7121-8da7-4e45-9b74-daf07fbf15fb",
"type": "main",
"index": 0
}
]
]
},
"f156ca8e-7963-42b9-9612-9ab5efc53be4": {
"main": [
[
{
"node": "3529fba4-173c-4378-ae69-43a3bae0813f",
"type": "main",
"index": 0
}
]
]
},
"58869c5b-9fb2-4f76-8788-68056cda45b0": {
"main": [
[
{
"node": "86221ed0-29fa-4775-ba36-8ffdf614977c",
"type": "main",
"index": 0
}
]
]
},
"01c2f7ff-ff6c-4a60-9581-f8c5f3985792": {
"main": [
[
{
"node": "51a2c3d3-3e75-4375-b2b6-4bb86fa71855",
"type": "main",
"index": 0
},
{
"node": "c31bb906-2a0d-406a-a7cd-6fc4adfcb67b",
"type": "main",
"index": 0
}
]
]
}
}
}Häufig gestellte Fragen
Wie verwende ich diesen Workflow?
Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.
Für welche Szenarien ist dieser Workflow geeignet?
Experte - Künstliche Intelligenz, Marketing
Ist es kostenpflichtig?
Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.
Verwandte Workflows
LinkedIn-Automatisierung - Archit Jain
Automatisierte LinkedIn-Erstellung aus Twitter-KI-Posts mit GPT-4 und Google Sheets
Code
Wait
Limit
+
Code
Wait
Limit
35 NodesArchit Jain
Künstliche Intelligenz
Automatisierung der Veröffentlichung von RSS-Inhalten als Blogbeiträge mit GPT-4o, WordPress und LinkedIn
Automatisierung der Veröffentlichung von RSS-Inhalten als Blogartikel auf WordPress und LinkedIn durch KI
If
Set
Code
+
If
Set
Code
40 NodesImmanuel
Künstliche Intelligenz
Automatische Generierung von Social-Media-Postings aus Google Trends und Perplexity
KI-gesteuerte Automatisierung von Social-Media-Postings für mehrere Plattformen basierend auf Google Trends und Perplexity AI
Set
Code
Wait
+
Set
Code
Wait
18 NodesGerald Denor
Künstliche Intelligenz
LinkedIn-Automatisierung
Automatisches Veröffentlichen von Medium.com-Artikeln auf LinkedIn mit Telegram-Benachrichtigungen
If
Code
Filter
+
If
Code
Filter
15 NodesKrishna Kumar Eswaran
Künstliche Intelligenz
Automatisierter Blog-Schreib- und Social-Media-Promotions-Agent
Automatisierung der Erstellung von SEO-Blogs + Social Media mit GPT-4, Perplexity und WordPress
Set
Code
Gmail
+
Set
Code
Gmail
79 NodesLukaszB
Design
n8n-Knoten in der visuellen Referenzbibliothek erkunden
Erkundung von n8n-Knoten in der visuellen Referenzbibliothek
If
Ftp
Set
+
If
Ftp
Set
113 NodesI versus AI
Sonstiges
Workflow-Informationen
Schwierigkeitsgrad
Experte
Anzahl der Nodes26
Kategorie2
Node-Typen14
Autor
Externe Links
Auf n8n.io ansehen →
Diesen Workflow teilen