Hugging Face nach Notion
Fortgeschritten
Dies ist ein AI-Bereich Automatisierungsworkflow mit 11 Nodes. Hauptsächlich werden If, Html, Notion, SplitOut, HttpRequest und andere Nodes verwendet, kombiniert mit KI-Technologie für intelligente Automatisierung. KI-Analyse der Hugging Face-Papiere und Speicherung in Notion
Voraussetzungen
- •Notion API Key
- •Möglicherweise sind Ziel-API-Anmeldedaten erforderlich
- •OpenAI API Key
Verwendete Nodes (11)
Kategorie
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
"id": "FU3MrLkaTHmfdG4n",
"meta": {
"instanceId": "3294023dd650d95df294922b9d55d174ef26f4a2e6cce97c8a4ab5f98f5b8c7b",
"templateCredsSetupCompleted": true
},
"name": "Hugging Face to Notion",
"tags": [],
"nodes": [
{
"id": "32d5bfee-97f1-4e92-b62e-d09bdd9c3821",
"name": "Zeitplan-Trigger",
"type": "n8n-nodes-base.scheduleTrigger",
"position": [
-2640,
-300
],
"parameters": {
"rule": {
"interval": [
{
"field": "weeks",
"triggerAtDay": [
1,
2,
3,
4,
5
],
"triggerAtHour": 8
}
]
}
},
"typeVersion": 1.2
},
{
"id": "b1f4078e-ac77-47ec-995c-f52fd98fafef",
"name": "Wenn",
"type": "n8n-nodes-base.if",
"position": [
-1360,
-280
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "7094d6db-1fa7-4b59-91cf-6bbd5b5f067e",
"operator": {
"type": "object",
"operation": "empty",
"singleValue": true
},
"leftValue": "={{ $json }}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "afac08e1-b629-4467-86ef-907e4a5e8841",
"name": "Über Elemente iterieren",
"type": "n8n-nodes-base.splitInBatches",
"position": [
-1760,
-300
],
"parameters": {
"options": {
"reset": false
}
},
"typeVersion": 3
},
{
"id": "807ba450-9c89-4f88-aa84-91f43e3adfc6",
"name": "Aufteilen",
"type": "n8n-nodes-base.splitOut",
"position": [
-1960,
-300
],
"parameters": {
"options": {},
"fieldToSplitOut": "url, url"
},
"typeVersion": 1
},
{
"id": "08dd3f15-2030-48f2-ab0f-f85f797268e1",
"name": "Hugging Face-Papier anfordern",
"type": "n8n-nodes-base.httpRequest",
"position": [
-2440,
-300
],
"parameters": {
"url": "https://huggingface.co/papers",
"options": {},
"sendQuery": true,
"queryParameters": {
"parameters": [
{
"name": "date",
"value": "={{ $now.minus(1,'days').format('yyyy-MM-dd') }}"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "f37ba769-d881-4aad-927d-ca1f4a68b9a1",
"name": "Hugging Face-Papier extrahieren",
"type": "n8n-nodes-base.html",
"position": [
-2200,
-300
],
"parameters": {
"options": {},
"operation": "extractHtmlContent",
"extractionValues": {
"values": [
{
"key": "url",
"attribute": "href",
"cssSelector": ".line-clamp-3",
"returnArray": true,
"returnValue": "attribute"
}
]
}
},
"typeVersion": 1.2
},
{
"id": "94ba99bf-a33b-4311-a4e6-86490e1bb9ad",
"name": "Prüfen, ob Papier-URL existiert",
"type": "n8n-nodes-base.notion",
"position": [
-1540,
-280
],
"parameters": {
"filters": {
"conditions": [
{
"key": "URL|url",
"urlValue": "={{ 'https://huggingface.co'+$json.url }}",
"condition": "equals"
}
]
},
"options": {},
"resource": "databasePage",
"operation": "getAll",
"databaseId": {
"__rl": true,
"mode": "list",
"value": "17b67aba-1fcc-80ae-baa1-d88ffda7ae83",
"cachedResultUrl": "https://www.notion.so/17b67aba1fcc80aebaa1d88ffda7ae83",
"cachedResultName": "huggingface-abstract"
},
"filterType": "manual"
},
"credentials": {
"notionApi": {
"id": "I5KdUzwhWnphQ862",
"name": "notion"
}
},
"typeVersion": 2.2,
"alwaysOutputData": true
},
{
"id": "ece8dee2-e444-4557-aad9-5bdcb5ecd756",
"name": "Hugging Face-Papierdetails anfordern",
"type": "n8n-nodes-base.httpRequest",
"position": [
-1080,
-300
],
"parameters": {
"url": "={{ 'https://huggingface.co'+$('Split Out').item.json.url }}",
"options": {}
},
"typeVersion": 4.2
},
{
"id": "53b266fe-e7c4-4820-92eb-78a6ba7a6430",
"name": "OpenAI Abstract analysieren",
"type": "@n8n/n8n-nodes-langchain.openAi",
"position": [
-640,
-300
],
"parameters": {
"modelId": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-2024-11-20",
"cachedResultName": "GPT-4O-2024-11-20"
},
"options": {},
"messages": {
"values": [
{
"role": "system",
"content": "Extract the following key details from the paper abstract:\n\nCore Introduction: Summarize the main contributions and objectives of the paper, highlighting its innovations and significance.\nKeyword Extraction: List 2-5 keywords that best represent the research direction and techniques of the paper.\nKey Data and Results: Extract important performance metrics, comparison results, and the paper's advantages over other studies.\nTechnical Details: Provide a brief overview of the methods, optimization techniques, and datasets mentioned in the paper.\nClassification: Assign an appropriate academic classification based on the content of the paper.\n\n\nOutput as json:\n{\n \"Core_Introduction\": \"PaSa is an advanced Paper Search agent powered by large language models that can autonomously perform a series of decisions (including invoking search tools, reading papers, and selecting relevant references) to provide comprehensive and accurate results for complex academic queries.\",\n \"Keywords\": [\n \"Paper Search Agent\",\n \"Large Language Models\",\n \"Reinforcement Learning\",\n \"Academic Queries\",\n \"Performance Benchmarking\"\n ],\n \"Data_and_Results\": \"PaSa outperforms existing baselines (such as Google, GPT-4, chatGPT) in tests using AutoScholarQuery (35k academic queries) and RealScholarQuery (real-world academic queries). For example, PaSa-7B exceeds Google with GPT-4o by 37.78% in recall@20 and 39.90% in recall@50.\",\n \"Technical_Details\": \"PaSa is optimized using reinforcement learning with the AutoScholarQuery synthetic dataset, demonstrating superior performance in multiple benchmarks.\",\n \"Classification\": [\n \"Artificial Intelligence (AI)\",\n \"Academic Search and Information Retrieval\",\n \"Natural Language Processing (NLP)\",\n \"Reinforcement Learning\"\n ]\n}\n```"
},
{
"content": "={{ $json.abstract }}"
}
]
},
"jsonOutput": true
},
"credentials": {
"openAiApi": {
"id": "LmLcxHwbzZNWxqY6",
"name": "Unnamed credential"
}
},
"typeVersion": 1.8
},
{
"id": "f491cd7f-598e-46fd-b80c-04cfa9766dfd",
"name": "Abstract speichern Notion",
"type": "n8n-nodes-base.notion",
"position": [
-300,
-300
],
"parameters": {
"options": {},
"resource": "databasePage",
"databaseId": {
"__rl": true,
"mode": "list",
"value": "17b67aba-1fcc-80ae-baa1-d88ffda7ae83",
"cachedResultUrl": "https://www.notion.so/17b67aba1fcc80aebaa1d88ffda7ae83",
"cachedResultName": "huggingface-abstract"
},
"propertiesUi": {
"propertyValues": [
{
"key": "URL|url",
"urlValue": "={{ 'https://huggingface.co'+$('Split Out').item.json.url }}"
},
{
"key": "title|title",
"title": "={{ $('Extract Hugging Face Paper Abstract').item.json.title }}"
},
{
"key": "abstract|rich_text",
"textContent": "={{ $('Extract Hugging Face Paper Abstract').item.json.abstract.substring(0,2000) }}"
},
{
"key": "scrap-date|date",
"date": "={{ $today.format('yyyy-MM-dd') }}",
"includeTime": false
},
{
"key": "Classification|rich_text",
"textContent": "={{ $json.message.content.Classification.join(',') }}"
},
{
"key": "Technical_Details|rich_text",
"textContent": "={{ $json.message.content.Technical_Details }}"
},
{
"key": "Data_and_Results|rich_text",
"textContent": "={{ $json.message.content.Data_and_Results }}"
},
{
"key": "keywords|rich_text",
"textContent": "={{ $json.message.content.Keywords.join(',') }}"
},
{
"key": "Core Introduction|rich_text",
"textContent": "={{ $json.message.content.Core_Introduction }}"
}
]
}
},
"credentials": {
"notionApi": {
"id": "I5KdUzwhWnphQ862",
"name": "notion"
}
},
"typeVersion": 2.2
},
{
"id": "d5816a1c-d1fa-4be2-8088-57fbf68e6b43",
"name": "Hugging Face-Papier-Abstract extrahieren",
"type": "n8n-nodes-base.html",
"position": [
-840,
-300
],
"parameters": {
"options": {},
"operation": "extractHtmlContent",
"extractionValues": {
"values": [
{
"key": "abstract",
"cssSelector": ".text-gray-700"
},
{
"key": "title",
"cssSelector": ".text-2xl"
}
]
}
},
"typeVersion": 1.2
}
],
"active": true,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "4b0ec2a3-253d-46d5-a4d4-1d9ff21ba4a3",
"connections": {
"b1f4078e-ac77-47ec-995c-f52fd98fafef": {
"main": [
[
{
"node": "ece8dee2-e444-4557-aad9-5bdcb5ecd756",
"type": "main",
"index": 0
}
],
[
{
"node": "afac08e1-b629-4467-86ef-907e4a5e8841",
"type": "main",
"index": 0
}
]
]
},
"807ba450-9c89-4f88-aa84-91f43e3adfc6": {
"main": [
[
{
"node": "afac08e1-b629-4467-86ef-907e4a5e8841",
"type": "main",
"index": 0
}
]
]
},
"afac08e1-b629-4467-86ef-907e4a5e8841": {
"main": [
[],
[
{
"node": "94ba99bf-a33b-4311-a4e6-86490e1bb9ad",
"type": "main",
"index": 0
}
]
]
},
"32d5bfee-97f1-4e92-b62e-d09bdd9c3821": {
"main": [
[
{
"node": "08dd3f15-2030-48f2-ab0f-f85f797268e1",
"type": "main",
"index": 0
}
]
]
},
"f491cd7f-598e-46fd-b80c-04cfa9766dfd": {
"main": [
[
{
"node": "afac08e1-b629-4467-86ef-907e4a5e8841",
"type": "main",
"index": 0
}
]
]
},
"94ba99bf-a33b-4311-a4e6-86490e1bb9ad": {
"main": [
[
{
"node": "b1f4078e-ac77-47ec-995c-f52fd98fafef",
"type": "main",
"index": 0
}
]
]
},
"53b266fe-e7c4-4820-92eb-78a6ba7a6430": {
"main": [
[
{
"node": "f491cd7f-598e-46fd-b80c-04cfa9766dfd",
"type": "main",
"index": 0
}
]
]
},
"f37ba769-d881-4aad-927d-ca1f4a68b9a1": {
"main": [
[
{
"node": "807ba450-9c89-4f88-aa84-91f43e3adfc6",
"type": "main",
"index": 0
}
]
]
},
"08dd3f15-2030-48f2-ab0f-f85f797268e1": {
"main": [
[
{
"node": "f37ba769-d881-4aad-927d-ca1f4a68b9a1",
"type": "main",
"index": 0
}
]
]
},
"ece8dee2-e444-4557-aad9-5bdcb5ecd756": {
"main": [
[
{
"node": "d5816a1c-d1fa-4be2-8088-57fbf68e6b43",
"type": "main",
"index": 0
}
]
]
},
"d5816a1c-d1fa-4be2-8088-57fbf68e6b43": {
"main": [
[
{
"node": "53b266fe-e7c4-4820-92eb-78a6ba7a6430",
"type": "main",
"index": 0
}
]
]
}
}
}Häufig gestellte Fragen
Wie verwende ich diesen Workflow?
Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.
Für welche Szenarien ist dieser Workflow geeignet?
Fortgeschritten - Künstliche Intelligenz
Ist es kostenpflichtig?
Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.
Verwandte Workflows
Automatisierter Hugging Face-Papierzusammenfassungs- und Klassifizierungsworkflow
Automatisierter Arbeitsablauf zum Abrufen und Klassifizieren von Hugging Face-Papierzusammenfassungen
If
Html
Slack
+
If
Html
Slack
12 Nodesquentin
Engineering
Automatisierung der Microsoft-Teams-Konferenzanalyse mit GPT-4.1, Outlook und Mem.ai
Automatisierte Analyse von Microsoft Teams-Besprechungen mit GPT-4.1, Outlook und Mem.ai
If
Set
Code
+
If
Set
Code
61 NodesWayne Simpson
Personalwesen
Content-Farm – AI-gesteuerte WordPress-Blog-Automatisierung
Content Farm - KI-gesteuerte WordPress-Blog-Automatisierung
Set
Code
Html
+
Set
Code
Html
81 NodesJay Emp0
Künstliche Intelligenz
Erstellung eines automatisierten Kundensupport-Assistenten mit GPT-4o und GoHighLevel SMS
Erstelle einen automatisierten Kundensupport-Assistenten mit GPT-4o und GoHighLevel SMS
If
Set
Xml
+
If
Set
Xml
43 NodesCyril Nicko Gaspar
Support
Tagesdienst mit Nachrichten zusammengefasst, mit Excel, Outlook und AI
Täglicher Nachrichten-Newsletter mit Excel, Outlook und KI
If
Set
Html
+
If
Set
Html
33 NodesJimleuk
Künstliche Intelligenz
Entdecken und Anreichern von Entscheidungsträger-Informationen mit Apollo und manueller Überprüfung
Entdeckung und Anreicherung von Entscheider-Informationen mit Apollo und manueller Verifizierung
If
Code
Merge
+
If
Code
Merge
35 NodesUche Madu
Vertrieb
Workflow-Informationen
Schwierigkeitsgrad
Fortgeschritten
Anzahl der Nodes11
Kategorie1
Node-Typen8
Autor
AI Native
@ainativeExterne Links
Auf n8n.io ansehen →
Diesen Workflow teilen