Adaptiver und konditionaler KI-Chat-Assistent - www.quantralabs.com

Experte

Dies ist ein AI-Bereich Automatisierungsworkflow mit 40 Nodes. Hauptsächlich werden Set, Switch, Summarize, Agent, RespondToWebhook und andere Nodes verwendet, kombiniert mit KI-Technologie für intelligente Automatisierung. Erstelle adaptive RAG-Chat-Agents mit Google Gemini und Qdrant

Voraussetzungen
  • HTTP Webhook-Endpunkt (wird von n8n automatisch generiert)
  • Qdrant-Serververbindungsdaten
  • Google Gemini API Key
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
  "id": "bU9BBKV0yadVVd30",
  "meta": {
    "instanceId": "315ec16104c52c82cc21fd9b6adb469e4bd7c2899d0990cb255788b78628ebf4"
  },
  "name": "Adaptive & Conditional AI Chat Agent - www.quantralabs.com",
  "tags": [],
  "nodes": [
    {
      "id": "6cccf7c5-9d8b-4f11-a7e1-c1bcf48bb9fe",
      "name": "Abfrageklassifizierung",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "notes": "Classify a query into one of four categories: Factual, Analytical, Opinion, or Contextual.\n        \nReturns:\nstr: Query category",
      "position": [
        -660,
        880
      ],
      "parameters": {
        "text": "=Classify this query: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "You are an expert at classifying questions. \n\nClassify the given query into exactly one of these categories:\n- Factual: Queries seeking specific, verifiable information.\n- Analytical: Queries requiring comprehensive analysis or explanation.\n- Opinion: Queries about subjective matters or seeking diverse viewpoints.\n- Contextual: Queries that depend on user-specific context.\n\nReturn ONLY the category name, without any explanation or additional text."
        },
        "promptType": "define"
      },
      "typeVersion": 1.8
    },
    {
      "id": "937104bc-5756-4adb-af0b-3e8741536e44",
      "name": "Switch",
      "type": "n8n-nodes-base.switch",
      "position": [
        -300,
        860
      ],
      "parameters": {
        "rules": {
          "values": [
            {
              "outputKey": "Factual",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "87f3b50c-9f32-4260-ac76-19c05b28d0b4",
                    "operator": {
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.output.trim() }}",
                    "rightValue": "Factual"
                  }
                ]
              },
              "renameOutput": true
            },
            {
              "outputKey": "Analytical",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "f8651b36-79fa-4be4-91fb-0e6d7deea18f",
                    "operator": {
                      "name": "filter.operator.equals",
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.output.trim() }}",
                    "rightValue": "Analytical"
                  }
                ]
              },
              "renameOutput": true
            },
            {
              "outputKey": "Opinion",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "5dde06bc-5fe1-4dca-b6e2-6857c5e96d49",
                    "operator": {
                      "name": "filter.operator.equals",
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.output.trim() }}",
                    "rightValue": "Opinion"
                  }
                ]
              },
              "renameOutput": true
            },
            {
              "outputKey": "Contextual",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "bf97926d-7a0b-4e2f-aac0-a820f73344d8",
                    "operator": {
                      "name": "filter.operator.equals",
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.output.trim() }}",
                    "rightValue": "Contextual"
                  }
                ]
              },
              "renameOutput": true
            }
          ]
        },
        "options": {
          "fallbackOutput": 0
        }
      },
      "typeVersion": 3.2
    },
    {
      "id": "7346bf45-3f9b-4717-8cb5-52d829f0826c",
      "name": "Faktische Strategie - Fokus auf Präzision",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "notes": "Retrieval strategy for factual queries focusing on precision.",
      "position": [
        100,
        120
      ],
      "parameters": {
        "text": "=Enhance this factual query: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "=You are an expert at enhancing search queries.\n\nYour task is to reformulate the given factual query to make it more precise and specific for information retrieval. Focus on key entities and their relationships.\n\nProvide ONLY the enhanced query without any explanation."
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "ac1df57d-524c-4393-a81c-fb720f19b05e",
      "name": "Analytische Strategie - Umfassende Abdeckung",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "notes": "Retrieval strategy for analytical queries focusing on comprehensive coverage.",
      "position": [
        100,
        660
      ],
      "parameters": {
        "text": "=Generate sub-questions for this analytical query: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "=You are an expert at breaking down complex questions.\n\nGenerate sub-questions that explore different aspects of the main analytical query.\nThese sub-questions should cover the breadth of the topic and help retrieve comprehensive information.\n\nReturn a list of exactly 3 sub-questions, one per line."
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "7df8350e-4f18-47fb-bd9a-c0238d218603",
      "name": "Meinungsstrategie - Vielfältige Perspektiven",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "notes": "Retrieval strategy for opinion queries focusing on diverse perspectives.",
      "position": [
        100,
        1200
      ],
      "parameters": {
        "text": "=Identify different perspectives on: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "=You are an expert at identifying different perspectives on a topic.\n\nFor the given query about opinions or viewpoints, identify different perspectives that people might have on this topic.\n\nReturn a list of exactly 3 different viewpoint angles, one per line."
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "0f9ef12d-7df4-4255-b5e2-27eb4e7ce982",
      "name": "Kontextstrategie - Nutzerkontextintegration",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "notes": "Retrieval strategy for contextual queries integrating user context.",
      "position": [
        100,
        1740
      ],
      "parameters": {
        "text": "=Infer the implied context in this query: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "=You are an expert at understanding implied context in questions.\n\nFor the given query, infer what contextual information might be relevant or implied but not explicitly stated. Focus on what background would help answering this query.\n\nReturn a brief description of the implied context."
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "3c04f8e8-1304-436d-86eb-d905aa1cc261",
      "name": "Chat",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        -1320,
        1020
      ],
      "webhookId": "56f626b5-339e-48af-857f-1d4198fc8a4d",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "e1daa9fc-62d2-4664-a9f3-dcdecf9071e6",
      "name": "Faktische Eingabeaufforderung und Ausgabe",
      "type": "n8n-nodes-base.set",
      "position": [
        500,
        120
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
              "name": "prompt",
              "type": "string",
              "value": "You are a helpful assistant providing factual information. Answer the question based on the provided context. Focus on accuracy and precision. If the context doesn't contain the information needed, acknowledge the limitations."
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "1429dfd5-709d-4065-9134-05820fad871b",
      "name": "Kontextbezogene Eingabeaufforderung und Ausgabe",
      "type": "n8n-nodes-base.set",
      "position": [
        500,
        1740
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
              "name": "prompt",
              "type": "string",
              "value": "You are a helpful assistant providing contextually relevant information. Answer the question considering both the query and its context. Make connections between the query context and the information in the provided documents. If the context doesn't fully address the specific situation, acknowledge the limitations."
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "01c57856-4378-4085-bb67-2edf9b1164f9",
      "name": "Meinungsbezogene Eingabeaufforderung und Ausgabe",
      "type": "n8n-nodes-base.set",
      "position": [
        500,
        1200
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
              "name": "prompt",
              "type": "string",
              "value": "You are a helpful assistant discussing topics with multiple viewpoints. Based on the provided context, present different perspectives on the topic. Ensure fair representation of diverse opinions without showing bias. Acknowledge where the context presents limited viewpoints."
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "3cb3f5e1-c85c-4481-a147-8b3c419526ee",
      "name": "Analytische Eingabeaufforderung und Ausgabe",
      "type": "n8n-nodes-base.set",
      "position": [
        500,
        660
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
              "name": "prompt",
              "type": "string",
              "value": "You are a helpful assistant providing analytical insights. Based on the provided context, offer a comprehensive analysis of the topic. Cover different aspects and perspectives in your explanation. If the context has gaps, acknowledge them while providing the best analysis possible."
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "34577e85-b067-49dd-90a6-048805de5118",
      "name": "Gemini Klassifizierung",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        -680,
        1080
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-lite"
      },
      "typeVersion": 1
    },
    {
      "id": "7257c1dd-56bb-4f50-b206-2edd55fdd7cf",
      "name": "Gemini Faktisch",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        80,
        340
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "typeVersion": 1
    },
    {
      "id": "47465499-74e8-4425-913a-2efd5c5e3441",
      "name": "Gemini Analytisch",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        80,
        880
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "typeVersion": 1
    },
    {
      "id": "a7273940-82c8-44a9-8890-b00c1a741015",
      "name": "Chat-Pufferspeicher Analytisch",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        240,
        880
      ],
      "parameters": {
        "sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "6b573a7d-a6f0-4290-b3f1-3e36785bbee1",
      "name": "Chat-Pufferspeicher Faktisch",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        240,
        340
      ],
      "parameters": {
        "sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "9b20e2d9-9c67-45a0-9dfe-03bafb62f67f",
      "name": "Gemini Meinung",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        80,
        1420
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "typeVersion": 1
    },
    {
      "id": "70489752-18b8-4676-a700-539c7b0fecb3",
      "name": "Chat-Pufferspeicher Meinung",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        240,
        1420
      ],
      "parameters": {
        "sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "e32a0ce3-2f72-43ca-b12a-03e3cf1b7818",
      "name": "Gemini Kontextuell",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        80,
        1960
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "typeVersion": 1
    },
    {
      "id": "75c4f677-4c78-4a22-b0b4-44f3882c1a4e",
      "name": "Chat-Pufferspeicher Kontextuell",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        240,
        1960
      ],
      "parameters": {
        "sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "31d68f85-3cfc-4c93-81f7-c27070bf7307",
      "name": "Embeddings",
      "type": "@n8n/n8n-nodes-langchain.embeddingsGoogleGemini",
      "position": [
        1020,
        1100
      ],
      "parameters": {
        "modelName": "models/text-embedding-004"
      },
      "typeVersion": 1
    },
    {
      "id": "53910aea-7326-4d59-8585-693cb05afc3e",
      "name": "Notizzettel",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        0,
        0
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 520,
        "content": "## Factual Strategy\n**Retrieve precise facts and figures.**"
      },
      "typeVersion": 1
    },
    {
      "id": "87015bf7-0bf1-490f-90b4-96346cc51b7c",
      "name": "Notizzettel1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        0,
        540
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 520,
        "content": "## Analytical Strategy\n**Provide comprehensive coverage of a topics and exploring different aspects.**"
      },
      "typeVersion": 1
    },
    {
      "id": "b14886e0-e513-405d-92d5-d4a417280546",
      "name": "Notizzettel2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        0,
        1080
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 520,
        "content": "## Opinion Strategy\n**Gather diverse viewpoints on a subjective issue.**"
      },
      "typeVersion": 1
    },
    {
      "id": "77cd1373-d547-462b-85cb-6799e7fbae84",
      "name": "Notizzettel3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        0,
        1620
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 520,
        "content": "## Contextual Strategy\n**Incorporate user-specific context to fine-tune the retrieval.**"
      },
      "typeVersion": 1
    },
    {
      "id": "edfe1620-b040-466c-a8b2-a6f2aae565c5",
      "name": "Kontext verketten",
      "type": "n8n-nodes-base.summarize",
      "position": [
        1400,
        880
      ],
      "parameters": {
        "options": {},
        "fieldsToSummarize": {
          "values": [
            {
              "field": "document.pageContent",
              "separateBy": "other",
              "aggregation": "concatenate",
              "customSeparator": "={{ \"\\n\\n---\\n\\n\" }}"
            }
          ]
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "059f5b2e-52db-49f6-bee8-9dfcd5fd1ea4",
      "name": "Dokumente aus Vektorspeicher abrufen",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        1040,
        880
      ],
      "parameters": {
        "mode": "load",
        "topK": 10,
        "prompt": "={{ $json.prompt }}\n\nUser query: \n{{ $json.output }}",
        "options": {},
        "qdrantCollection": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $('Combined Fields').item.json.vector_store_id }}"
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "d1a2de81-c92b-459a-a2b6-bb6d171ba712",
      "name": "Eingabeaufforderung und Ausgabe festlegen",
      "type": "n8n-nodes-base.set",
      "position": [
        840,
        880
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "1d782243-0571-4845-b8fe-4c6c4b55379e",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "547091fb-367c-44d4-ac39-24d073da70e0",
              "name": "prompt",
              "type": "string",
              "value": "={{ $json.prompt }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "aa7dede0-8241-4428-84db-7a403935a052",
      "name": "Gemini Antwort",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1680,
        1100
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "typeVersion": 1
    },
    {
      "id": "5a33f53d-2297-46a1-9508-54c1e4f168be",
      "name": "Antwort",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        1720,
        880
      ],
      "parameters": {
        "text": "=User query: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "={{ $('Set Prompt and Output').item.json.prompt }}\n\nUse the following context (delimited by <ctx></ctx>) and the chat history to answer the user query.\n<ctx>\n{{ $json.concatenated_document_pageContent }}\n</ctx>"
        },
        "promptType": "define"
      },
      "typeVersion": 1.8
    },
    {
      "id": "888d1b5e-151f-4fb7-a201-fa8706af6ae8",
      "name": "Chat-Pufferspeicher",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        1860,
        1100
      ],
      "parameters": {
        "sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "573efafe-0dca-46d9-98a9-2684277d411d",
      "name": "Notizzettel4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        760,
        680
      ],
      "parameters": {
        "color": 7,
        "width": 820,
        "height": 580,
        "content": "## Perform adaptive retrieval\n**Find document considering both query and context.**"
      },
      "typeVersion": 1
    },
    {
      "id": "f4219ef7-16ce-4cc6-8b03-a9480b2daf55",
      "name": "Notizzettel5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1600,
        680
      ],
      "parameters": {
        "color": 7,
        "width": 740,
        "height": 580,
        "content": "## Reply to the user integrating retrieval context"
      },
      "typeVersion": 1
    },
    {
      "id": "4fe79c8d-9670-4b2a-a7c7-5a2239906a14",
      "name": "Auf Webhook antworten",
      "type": "n8n-nodes-base.respondToWebhook",
      "position": [
        2080,
        880
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "ff99bc5a-bbbe-457d-b979-2ca1e04bd980",
      "name": "Notizzettel6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -760,
        680
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 580,
        "content": "## User query classification\n**Classify the query into one of four categories: Factual, Analytical, Opinion, or Contextual.**"
      },
      "typeVersion": 1
    },
    {
      "id": "c632a735-5a96-4a70-bf4c-6126e2e193f1",
      "name": "Bei Ausführung durch anderen Workflow",
      "type": "n8n-nodes-base.executeWorkflowTrigger",
      "position": [
        -1320,
        760
      ],
      "parameters": {
        "workflowInputs": {
          "values": [
            {
              "name": "user_query"
            },
            {
              "name": "chat_memory_key"
            },
            {
              "name": "vector_store_id"
            }
          ]
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "332b925d-0581-4b92-a7ce-83cbc8f66254",
      "name": "Kombinierte Felder",
      "type": "n8n-nodes-base.set",
      "position": [
        -1000,
        880
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "90ab73a2-fe01-451a-b9df-bffe950b1599",
              "name": "user_query",
              "type": "string",
              "value": "={{ $json.user_query || $json.chatInput }}"
            },
            {
              "id": "36686ff5-09fc-40a4-8335-a5dd1576e941",
              "name": "chat_memory_key",
              "type": "string",
              "value": "={{ $json.chat_memory_key || $('Chat').item.json.sessionId }}"
            },
            {
              "id": "4230c8f3-644c-4985-b710-a4099ccee77c",
              "name": "vector_store_id",
              "type": "string",
              "value": "={{ $json.vector_store_id || \"<ID HERE>\" }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "eab0d609-5d9b-4794-adb5-fd8a784f34b0",
      "name": "Notizzettel7",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1340,
        1300
      ],
      "parameters": {
        "width": 1280,
        "height": 1300,
        "content": "# Adaptive RAG Workflow\n\nThis n8n workflow implements a version of the Adaptive Retrieval-Augmented Generation (RAG) approach. It classifies user queries and applies different retrieval and generation strategies based on the query type (Factual, Analytical, Opinion, or Contextual) to provide more relevant and tailored answers from a knowledge base stored in a Qdrant vector store.\n\n## How it Works\n\n1.  **Input Trigger:**\n    * The workflow can be initiated via the built-in Chat interface or triggered by another n8n workflow.\n    * It expects inputs: `user_query`, `chat_memory_key` (for conversation history), and `vector_store_id` (specifying the Qdrant collection).\n    * A `Set` node (`Combined Fields`) standardizes these inputs.\n\n2.  **Query Classification:**\n    * A Google Gemini agent (`Query Classification`) analyzes the `user_query`.\n    * It classifies the query into one of four categories:\n        * **Factual:** Seeking specific, verifiable information.\n        * **Analytical:** Requiring comprehensive analysis or explanation.\n        * **Opinion:** Asking about subjective matters or seeking diverse viewpoints.\n        * **Contextual:** Depending on user-specific or implied context.\n\n3.  **Adaptive Strategy Routing:**\n    * A `Switch` node routes the workflow based on the classification result from the previous step.\n\n4.  **Strategy Implementation (Query Adaptation):**\n    * Depending on the route, a specific Google Gemini agent adapts the query or approach:\n        * **Factual Strategy:** Rewrites the query for better precision, focusing on key entities (`Factual Strategy - Focus on Precision`).\n        * **Analytical Strategy:** Breaks down the main query into multiple sub-questions to ensure comprehensive coverage (`Analytical Strategy - Comprehensive Coverage`).\n        * **Opinion Strategy:** Identifies different potential perspectives or angles related to the query (`Opinion Strategy - Diverse Perspectives`).\n        * **Contextual Strategy:** Infers implied context needed to answer the query effectively (`Contextual Strategy - User Context Integration`).\n    * Each strategy path uses its own chat memory buffer for the adaptation step.\n\n5.  **Retrieval Prompt & Output Setup:**\n    * Based on the *original* query classification, a `Set` node (`Factual/Analytical/Opinion/Contextual Prompt and Output`, combined via connections to `Set Prompt and Output`) prepares:\n        * The output from the strategy step (e.g., rewritten query, sub-questions, perspectives).\n        * A tailored system prompt for the final answer generation agent, instructing it how to behave based on the query type (e.g., focus on precision for Factual, present diverse views for Opinion).\n\n6.  **Document Retrieval (RAG):**\n    * The `Retrieve Documents from Vector Store` node uses the adapted query/output from the strategy step to search the specified Qdrant collection (`vector_store_id`).\n    * It retrieves the top relevant document chunks using Google Gemini embeddings.\n\n7.  **Context Preparation:**\n    * The content from the retrieved document chunks is concatenated (`Concatenate Context`) to form a single context block for the final answer generation.\n\n8.  **Answer Generation:**\n    * The final `Answer` agent (powered by Google Gemini) generates the response.\n    * It uses:\n        * The tailored system prompt set in step 5.\n        * The concatenated context from retrieved documents (step 7).\n        * The original `user_query`.\n        * The shared chat history (`Chat Buffer Memory` using `chat_memory_key`).\n\n9.  **Response:**\n    * The generated answer is sent back to the user via the `Respond to Webhook` node."
      },
      "typeVersion": 1
    },
    {
      "id": "1580b44f-bd48-43f8-b9ef-dbfd58042e68",
      "name": "Notizzettel8",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1100,
        680
      ],
      "parameters": {
        "color": 7,
        "width": 320,
        "height": 580,
        "content": "## ⚠️  If using in Chat mode\n\nUpdate the `vector_store_id` variable to the corresponding Qdrant ID needed to perform the documents retrieval."
      },
      "typeVersion": 1
    },
    {
      "id": "df475a3d-cec6-4a29-8d33-cfe8a1ae3d6c",
      "name": "Notizzettel9",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1720,
        1300
      ],
      "parameters": {
        "color": 5,
        "width": 360,
        "height": 200,
        "content": "## Quantra Labs \nFollow Us\nhttps://www.x.com/quantralabs\n\nConnect with Us\nhttps://www.linkedin.com/company/quantra-labs\n\nwww.quantralabs.com"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "c562673d-bddb-4abd-adef-59c2fb61e716",
  "connections": {
    "3c04f8e8-1304-436d-86eb-d905aa1cc261": {
      "main": [
        [
          {
            "node": "332b925d-0581-4b92-a7ce-83cbc8f66254",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "5a33f53d-2297-46a1-9508-54c1e4f168be": {
      "main": [
        [
          {
            "node": "4fe79c8d-9670-4b2a-a7c7-5a2239906a14",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "937104bc-5756-4adb-af0b-3e8741536e44": {
      "main": [
        [
          {
            "node": "7346bf45-3f9b-4717-8cb5-52d829f0826c",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "ac1df57d-524c-4393-a81c-fb720f19b05e",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "7df8350e-4f18-47fb-bd9a-c0238d218603",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "0f9ef12d-7df4-4255-b5e2-27eb4e7ce982",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "31d68f85-3cfc-4c93-81f7-c27070bf7307": {
      "ai_embedding": [
        [
          {
            "node": "059f5b2e-52db-49f6-bee8-9dfcd5fd1ea4",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "aa7dede0-8241-4428-84db-7a403935a052": {
      "ai_languageModel": [
        [
          {
            "node": "5a33f53d-2297-46a1-9508-54c1e4f168be",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "7257c1dd-56bb-4f50-b206-2edd55fdd7cf": {
      "ai_languageModel": [
        [
          {
            "node": "7346bf45-3f9b-4717-8cb5-52d829f0826c",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "9b20e2d9-9c67-45a0-9dfe-03bafb62f67f": {
      "ai_languageModel": [
        [
          {
            "node": "7df8350e-4f18-47fb-bd9a-c0238d218603",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "332b925d-0581-4b92-a7ce-83cbc8f66254": {
      "main": [
        [
          {
            "node": "6cccf7c5-9d8b-4f11-a7e1-c1bcf48bb9fe",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "47465499-74e8-4425-913a-2efd5c5e3441": {
      "ai_languageModel": [
        [
          {
            "node": "ac1df57d-524c-4393-a81c-fb720f19b05e",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "e32a0ce3-2f72-43ca-b12a-03e3cf1b7818": {
      "ai_languageModel": [
        [
          {
            "node": "0f9ef12d-7df4-4255-b5e2-27eb4e7ce982",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "888d1b5e-151f-4fb7-a201-fa8706af6ae8": {
      "ai_memory": [
        [
          {
            "node": "5a33f53d-2297-46a1-9508-54c1e4f168be",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "edfe1620-b040-466c-a8b2-a6f2aae565c5": {
      "main": [
        [
          {
            "node": "5a33f53d-2297-46a1-9508-54c1e4f168be",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "6cccf7c5-9d8b-4f11-a7e1-c1bcf48bb9fe": {
      "main": [
        [
          {
            "node": "937104bc-5756-4adb-af0b-3e8741536e44",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "34577e85-b067-49dd-90a6-048805de5118": {
      "ai_languageModel": [
        [
          {
            "node": "6cccf7c5-9d8b-4f11-a7e1-c1bcf48bb9fe",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "d1a2de81-c92b-459a-a2b6-bb6d171ba712": {
      "main": [
        [
          {
            "node": "059f5b2e-52db-49f6-bee8-9dfcd5fd1ea4",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "e1daa9fc-62d2-4664-a9f3-dcdecf9071e6": {
      "main": [
        [
          {
            "node": "d1a2de81-c92b-459a-a2b6-bb6d171ba712",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "01c57856-4378-4085-bb67-2edf9b1164f9": {
      "main": [
        [
          {
            "node": "d1a2de81-c92b-459a-a2b6-bb6d171ba712",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "6b573a7d-a6f0-4290-b3f1-3e36785bbee1": {
      "ai_memory": [
        [
          {
            "node": "7346bf45-3f9b-4717-8cb5-52d829f0826c",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "70489752-18b8-4676-a700-539c7b0fecb3": {
      "ai_memory": [
        [
          {
            "node": "7df8350e-4f18-47fb-bd9a-c0238d218603",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "3cb3f5e1-c85c-4481-a147-8b3c419526ee": {
      "main": [
        [
          {
            "node": "d1a2de81-c92b-459a-a2b6-bb6d171ba712",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "1429dfd5-709d-4065-9134-05820fad871b": {
      "main": [
        [
          {
            "node": "d1a2de81-c92b-459a-a2b6-bb6d171ba712",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a7273940-82c8-44a9-8890-b00c1a741015": {
      "ai_memory": [
        [
          {
            "node": "ac1df57d-524c-4393-a81c-fb720f19b05e",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "75c4f677-4c78-4a22-b0b4-44f3882c1a4e": {
      "ai_memory": [
        [
          {
            "node": "0f9ef12d-7df4-4255-b5e2-27eb4e7ce982",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "c632a735-5a96-4a70-bf4c-6126e2e193f1": {
      "main": [
        [
          {
            "node": "332b925d-0581-4b92-a7ce-83cbc8f66254",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "059f5b2e-52db-49f6-bee8-9dfcd5fd1ea4": {
      "main": [
        [
          {
            "node": "edfe1620-b040-466c-a8b2-a6f2aae565c5",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "7346bf45-3f9b-4717-8cb5-52d829f0826c": {
      "main": [
        [
          {
            "node": "e1daa9fc-62d2-4664-a9f3-dcdecf9071e6",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "7df8350e-4f18-47fb-bd9a-c0238d218603": {
      "main": [
        [
          {
            "node": "01c57856-4378-4085-bb67-2edf9b1164f9",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "ac1df57d-524c-4393-a81c-fb720f19b05e": {
      "main": [
        [
          {
            "node": "3cb3f5e1-c85c-4481-a147-8b3c419526ee",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "0f9ef12d-7df4-4255-b5e2-27eb4e7ce982": {
      "main": [
        [
          {
            "node": "1429dfd5-709d-4065-9134-05820fad871b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Häufig gestellte Fragen

Wie verwende ich diesen Workflow?

Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.

Für welche Szenarien ist dieser Workflow geeignet?

Experte - Künstliche Intelligenz

Ist es kostenpflichtig?

Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.

Workflow-Informationen
Schwierigkeitsgrad
Experte
Anzahl der Nodes40
Kategorie1
Node-Typen12
Schwierigkeitsbeschreibung

Für fortgeschrittene Benutzer, komplexe Workflows mit 16+ Nodes

Autor
Brandon Crenshaw

Brandon Crenshaw

@brandononchain

Founder & Systems Architect | Quantra Labs Engineering scalable solutions across AI, Blockchain, and Fintech.

Externe Links
Auf n8n.io ansehen

Diesen Workflow teilen

Kategorien

Kategorien: 34