Einfaches RAG
Fortgeschritten
Dies ist ein Internal Wiki, AI RAG-Bereich Automatisierungsworkflow mit 14 Nodes. Hauptsächlich werden FormTrigger, Agent, ChatTrigger, LmChatOpenAi, RerankerCohere und andere Nodes verwendet. PDF-basiertes RAG-System mit OpenAI, Pinecone und Cohere-Umsortierung bauen
Voraussetzungen
- •OpenAI API Key
- •Pinecone API Key
Verwendete Nodes (14)
Kategorie
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
"id": "pDhufDfHS9qRgtLf",
"meta": {
"instanceId": "fa52a98dd39f67760c7540fff8a0dd5306d89f766551eb7a7c84b5f43eb33d4c",
"templateCredsSetupCompleted": true
},
"name": "Simple RAG",
"tags": [],
"nodes": [
{
"id": "93cd13c5-12ad-4c9c-aac7-1886a1d24470",
"name": "Bei Formularübermittlung",
"type": "n8n-nodes-base.formTrigger",
"position": [
0,
0
],
"webhookId": "cab3dda4-3b49-4f05-a2c1-915ae4c62017",
"parameters": {
"options": {},
"formTitle": "Upload RAG PDF",
"formFields": {
"values": [
{
"fieldType": "file",
"fieldLabel": "File",
"multipleFiles": false,
"requiredField": true,
"acceptFileTypes": ".pdf"
}
]
},
"formDescription": "Upload RAG PDF"
},
"typeVersion": 2.2
},
{
"id": "13fe2ba5-a24d-4198-8509-882eb4c08e1a",
"name": "Pinecone Vector Store",
"type": "@n8n/n8n-nodes-langchain.vectorStorePinecone",
"position": [
320,
0
],
"parameters": {
"mode": "insert",
"options": {},
"pineconeIndex": {
"__rl": true,
"mode": "list",
"value": "n8n",
"cachedResultName": "n8n"
}
},
"credentials": {
"pineconeApi": {
"id": "VP5fhue9NYRkdlCj",
"name": "PineconeApi account"
}
},
"typeVersion": 1.3
},
{
"id": "aa3d1481-3da7-4ae1-9857-c64a71e28443",
"name": "Embeddings OpenAI",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
920,
460
],
"parameters": {
"options": {
"dimensions": 1024
}
},
"credentials": {
"openAiApi": {
"id": "y8sLJ2LzZL2c7SGi",
"name": "OpenAI Webinar"
}
},
"typeVersion": 1.2
},
{
"id": "17350e15-5b99-493d-acd2-9f44fd661b09",
"name": "Standard-Datenlader",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
440,
220
],
"parameters": {
"options": {},
"dataType": "binary",
"textSplittingMode": "custom"
},
"typeVersion": 1.1
},
{
"id": "8199713d-cad8-4d17-937c-1b3b604b95ea",
"name": "Rekursiver Zeichentext-Splitter",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
520,
440
],
"parameters": {
"options": {}
},
"typeVersion": 1
},
{
"id": "fcaf5178-4694-4e20-ac62-8da3c1c8279e",
"name": "Haftnotiz",
"type": "n8n-nodes-base.stickyNote",
"position": [
-60,
-80
],
"parameters": {
"width": 880,
"height": 680,
"content": "## Insert Data to Pinecone"
},
"typeVersion": 1
},
{
"id": "e094ded2-c2e9-4139-b6d0-df086f2e2049",
"name": "KI-Agent",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1440,
80
],
"parameters": {
"options": {
"systemMessage": "Hanya jawab berdasarkan data yang ada di tools \"VectorDB\". Kalau data disitu gak ada, jawab saja kamu tidak tahu."
}
},
"typeVersion": 2
},
{
"id": "015d2a82-3c3d-4604-bbbf-7df57dd24269",
"name": "Bei Chatnachrichtenempfang",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
1200,
80
],
"webhookId": "c1f8d15b-e096-47f8-922e-a7484ebbc25c",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "a1b26946-9a3f-4aa2-a723-f91e196943cf",
"name": "OpenAI Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1280,
300
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4.1",
"cachedResultName": "gpt-4.1"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "y8sLJ2LzZL2c7SGi",
"name": "OpenAI Webinar"
}
},
"typeVersion": 1.2
},
{
"id": "6beecd5e-a8fc-4e69-8fbc-a0e0e90c4aa6",
"name": "Einfacher Speicher",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
1480,
300
],
"parameters": {},
"typeVersion": 1.3
},
{
"id": "02b1aa4f-a291-4f2c-b6d9-0290d6b563ae",
"name": "VectorDB",
"type": "@n8n/n8n-nodes-langchain.vectorStorePinecone",
"position": [
1640,
300
],
"parameters": {
"mode": "retrieve-as-tool",
"topK": 20,
"options": {},
"useReranker": true,
"pineconeIndex": {
"__rl": true,
"mode": "list",
"value": "n8n",
"cachedResultName": "n8n"
},
"toolDescription": "Ambil data dari vector database untuk knowledgebase"
},
"credentials": {
"pineconeApi": {
"id": "VP5fhue9NYRkdlCj",
"name": "PineconeApi account"
}
},
"typeVersion": 1.3
},
{
"id": "bada58fc-73f4-431f-9702-e742a75ce2c3",
"name": "Haftnotiz1",
"type": "n8n-nodes-base.stickyNote",
"position": [
1100,
-80
],
"parameters": {
"color": 5,
"width": 860,
"height": 680,
"content": "## Chat AI Agent"
},
"typeVersion": 1
},
{
"id": "2e572866-dcf7-492f-aebe-35b12bc6b27d",
"name": "Haftnotiz2",
"type": "n8n-nodes-base.stickyNote",
"position": [
840,
300
],
"parameters": {
"color": 4,
"height": 300,
"content": "## Embedding Model"
},
"typeVersion": 1
},
{
"id": "6dcbbf3a-3acd-4170-9f79-c2441da18979",
"name": "Reranker Cohere",
"type": "@n8n/n8n-nodes-langchain.rerankerCohere",
"position": [
1740,
480
],
"parameters": {},
"credentials": {
"cohereApi": {
"id": "yDA2nh2ZZXkR9tcq",
"name": "Cohere API Trial"
}
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "6b1d46bd-ed09-4a25-a95e-fa5a3e2950f7",
"connections": {
"02b1aa4f-a291-4f2c-b6d9-0290d6b563ae": {
"ai_tool": [
[
{
"node": "e094ded2-c2e9-4139-b6d0-df086f2e2049",
"type": "ai_tool",
"index": 0
}
]
]
},
"6beecd5e-a8fc-4e69-8fbc-a0e0e90c4aa6": {
"ai_memory": [
[
{
"node": "e094ded2-c2e9-4139-b6d0-df086f2e2049",
"type": "ai_memory",
"index": 0
}
]
]
},
"6dcbbf3a-3acd-4170-9f79-c2441da18979": {
"ai_reranker": [
[
{
"node": "02b1aa4f-a291-4f2c-b6d9-0290d6b563ae",
"type": "ai_reranker",
"index": 0
}
]
]
},
"aa3d1481-3da7-4ae1-9857-c64a71e28443": {
"ai_embedding": [
[
{
"node": "13fe2ba5-a24d-4198-8509-882eb4c08e1a",
"type": "ai_embedding",
"index": 0
},
{
"node": "02b1aa4f-a291-4f2c-b6d9-0290d6b563ae",
"type": "ai_embedding",
"index": 0
}
]
]
},
"a1b26946-9a3f-4aa2-a723-f91e196943cf": {
"ai_languageModel": [
[
{
"node": "e094ded2-c2e9-4139-b6d0-df086f2e2049",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"93cd13c5-12ad-4c9c-aac7-1886a1d24470": {
"main": [
[
{
"node": "13fe2ba5-a24d-4198-8509-882eb4c08e1a",
"type": "main",
"index": 0
}
]
]
},
"17350e15-5b99-493d-acd2-9f44fd661b09": {
"ai_document": [
[
{
"node": "13fe2ba5-a24d-4198-8509-882eb4c08e1a",
"type": "ai_document",
"index": 0
}
]
]
},
"13fe2ba5-a24d-4198-8509-882eb4c08e1a": {
"main": [
[]
]
},
"015d2a82-3c3d-4604-bbbf-7df57dd24269": {
"main": [
[
{
"node": "e094ded2-c2e9-4139-b6d0-df086f2e2049",
"type": "main",
"index": 0
}
]
]
},
"8199713d-cad8-4d17-937c-1b3b604b95ea": {
"ai_textSplitter": [
[
{
"node": "17350e15-5b99-493d-acd2-9f44fd661b09",
"type": "ai_textSplitter",
"index": 0
}
]
]
}
}
}Häufig gestellte Fragen
Wie verwende ich diesen Workflow?
Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.
Für welche Szenarien ist dieser Workflow geeignet?
Fortgeschritten - Internes Wiki, KI RAG
Ist es kostenpflichtig?
Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.
Verwandte Workflows
Intelligentes Dokumenten-Frage-Antwort-System basierend auf Webhook, Pinecone + OpenAI + n8n
Dokumenten-Frage-Antwort-System mit OpenAI GPT, Pinecone-Vektordatenbank und Google Drive-Integration
Webhook
Google Drive
Manual Trigger
+
Webhook
Google Drive
Manual Trigger
30 NodesMohan Gopal
Internes Wiki
Einfacher RAG-Chatbot
Kunden-Support-RAG-Chatbot mit OpenAI und Pinecone
Google Drive
Agent
Google Drive Trigger
+
Google Drive
Agent
Google Drive Trigger
15 NodesIlyass Kanissi
KI RAG
🤖 Dokumentenexperten-Chatbot mit Gemini RAG-Pipeline erstellen
Baue einen n8n-Dokumentenexperten-Chatbot mit OpenAI RAG-Pipeline
Set
Html
Filter
+
Set
Html
Filter
46 NodesAyham
Internes Wiki
KI-Agent für GitHub
Erstellen Sie einen Code-Assistenten, der aus GitHub-Repositories mit OpenAI lernt
Set
Github
Http Request
+
Set
Github
Http Request
19 NodesNghia Nguyen
Internes Wiki
Dokumentenbasierter KI-Chatbot mit RAG, OpenAI und Cohere-Reranker
Dokumentenbasierte KI-Chatbot mit RAG, OpenAI und Cohere-Ranker
Google Drive
Manual Trigger
Agent
+
Google Drive
Manual Trigger
Agent
18 NodesAnderson Adelino
Internes Wiki
Mit Ihrem Drive-Ordner via RAG chatten
Mit Google-Dokumenten über GPT, Pinecone und RAG sprechen
Google Drive
Agent
Google Drive Trigger
+
Google Drive
Agent
Google Drive Trigger
20 NodesMarko
KI RAG
Workflow-Informationen
Schwierigkeitsgrad
Fortgeschritten
Anzahl der Nodes14
Kategorie2
Node-Typen11
Autor
Externe Links
Auf n8n.io ansehen →
Diesen Workflow teilen