18, analysiere den Kaufverlauf

Fortgeschritten

Dies ist ein Market Research, AI Summarization-Bereich Automatisierungsworkflow mit 15 Nodes. Hauptsächlich werden GoogleSheets, McpClientTool, ManualTrigger, Agent, LmChatOpenAi und andere Nodes verwendet. Verwenden Sie Bright Data, OpenAI und Google Sheets zur Analyse von Amazon-Kauf-Trends

Voraussetzungen
  • Google Sheets API-Anmeldedaten
  • OpenAI API Key
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
  "id": "FtPQQBuZOQRWsWkH",
  "meta": {
    "instanceId": "60046904b104f0f72b2629a9d88fe9f676be4035769f1f08dad1dd38a76b9480",
    "templateCredsSetupCompleted": true
  },
  "name": "18 Analyze Purchase Trends",
  "tags": [],
  "nodes": [
    {
      "id": "1ab29609-739c-4f42-b398-d40e275d2531",
      "name": "Bei Klick auf 'Workflow ausführen'",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        0,
        0
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "a4117e05-67bc-42be-ba31-4b75be46ef9f",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        480,
        260
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8sEyPDkC5p4w4Jha",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "99c92ba4-9af0-4808-8f5a-5729ab7c922b",
      "name": "Amazon-URLs aus Google Sheets abrufen",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        220,
        0
      ],
      "parameters": {
        "options": {},
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": "gid=0",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/12ouaPrMp5HEKKctEhVmjmIBVSFu75P4NFFe20XKH9mM/edit#gid=0",
          "cachedResultName": "Sheet1"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "12ouaPrMp5HEKKctEhVmjmIBVSFu75P4NFFe20XKH9mM",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/12ouaPrMp5HEKKctEhVmjmIBVSFu75P4NFFe20XKH9mM/edit?usp=drivesdk",
          "cachedResultName": "Product purchase trends"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "r2mDaisH6e9VkwHl",
          "name": "Google Sheets account"
        }
      },
      "typeVersion": 4.6
    },
    {
      "id": "a9a77a78-e60c-4329-ba4a-697c806bbf5c",
      "name": "Amazon Product Analyzer (KI-Agent)",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        500,
        0
      ],
      "parameters": {
        "text": "=extract the unit sold, current price, stock availability, review count & rating, sales rank and based on it's purchasing performance give it rating out of 10.\nBelow is the url of the amazon product:\n{{ $json.url }}",
        "options": {},
        "promptType": "define",
        "hasOutputParser": true
      },
      "typeVersion": 2
    },
    {
      "id": "353646b6-e2cb-42fd-aa8d-9d3c1693ef25",
      "name": "Tool: MCP Client (Bright Data)",
      "type": "n8n-nodes-mcp.mcpClientTool",
      "position": [
        660,
        260
      ],
      "parameters": {
        "toolName": "web_data_amazon_product",
        "operation": "executeTool",
        "toolParameters": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('Tool_Parameters', ``, 'json') }}"
      },
      "credentials": {
        "mcpClientApi": {
          "id": "eqq94k789oJCd6jU",
          "name": "MCP Client (STDIO) account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "8ef0d68c-c9f6-4fda-8421-318da2875715",
      "name": "Sheet mit Produkt-Insights aktualisieren",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        1040,
        0
      ],
      "parameters": {
        "columns": {
          "value": {
            "Ranking": "={{ $json.output[0].performance_rating }}",
            "Sales rank": "={{ $json.output[0].sales_rank }}",
            "Units sold": "={{ $json.output[0].units_sold_last_month }}",
            "row_number": "={{ $('Fetch Amazon URLs from Google Sheets').item.json.row_number }}",
            "Current price": "={{ $json.output[0].current_price }}",
            "Stock availability": "={{ $json.output[0].stock_status }}",
            "Review count & rating": "={{ $json.output[0].review_count }} & {{ $json.output[0].rating }}"
          },
          "schema": [
            {
              "id": "url",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "url",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Units sold",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Units sold",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Current price",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Current price",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Stock availability",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Stock availability",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Review count & rating",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Review count & rating",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Sales rank",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Sales rank",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Ranking",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Ranking",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "row_number",
              "type": "string",
              "display": true,
              "removed": false,
              "readOnly": true,
              "required": false,
              "displayName": "row_number",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "defineBelow",
          "matchingColumns": [
            "row_number"
          ],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        },
        "options": {},
        "operation": "update",
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": "gid=0",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/12ouaPrMp5HEKKctEhVmjmIBVSFu75P4NFFe20XKH9mM/edit#gid=0",
          "cachedResultName": "Sheet1"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "12ouaPrMp5HEKKctEhVmjmIBVSFu75P4NFFe20XKH9mM",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/12ouaPrMp5HEKKctEhVmjmIBVSFu75P4NFFe20XKH9mM/edit?usp=drivesdk",
          "cachedResultName": "Product purchase trends"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "r2mDaisH6e9VkwHl",
          "name": "Google Sheets account"
        }
      },
      "typeVersion": 4.6
    },
    {
      "id": "f2b27f36-4860-4b98-8dac-1ca89192d7a4",
      "name": "Notizzettel",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -40,
        -620
      ],
      "parameters": {
        "color": 5,
        "width": 420,
        "height": 820,
        "content": "### 🔹 **SECTION 1: Trigger & Read Product URLs**\n\n**Nodes Combined:**\n\n* `Start Workflow (Manual Trigger)`\n* `Fetch Amazon URLs from Google Sheets`\n\n📌 **What Happens Here:**\nWhen you click **\"Execute workflow\"**, the automation kicks off. It reads a list of Amazon product URLs from a connected **Google Sheet** — each URL representing a product you want to analyze.\n\n🧠 **Why This Is Useful:**\nYou don't have to input product links manually every time. Just **paste your URLs in the Google Sheet**, and this step will automatically fetch them all. Perfect for monitoring dozens (or hundreds) of products.\n\n📋 **Fields Expected in Google Sheet:**\n\n* `URL` (Amazon product link)\n* *(Other columns will be auto-filled later)*\n\n🔧 **Icons Involved:**\n\n* ⚡ `Trigger`\n* 📄 `Google Sheets`\n\n---\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "20d538a0-6bec-4e2f-9d53-55a10c7f2236",
      "name": "Notizzettel1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        460,
        -1120
      ],
      "parameters": {
        "color": 3,
        "width": 340,
        "height": 1320,
        "content": "### 🤖 **SECTION 2: AI Agent + Scraper + Parser**\n\n**Node: `Amazon Product Analyzer (AI Agent)` + Sub-nodes:**\n\n* `OpenAI Chat Model`\n* `MCP Client (Bright Data)`\n* `Structured Output Parser`\n\n📌 **What Happens Here:**\n\n1. 🔍 The **AI Agent** passes each product URL to:\n\n   * 🛰️ The **MCP Client**, which uses **Bright Data's Mobile Carrier Proxy** to scrape data safely from Amazon (bypassing detection).\n   * 📊 The **data collected** includes:\n\n     * Units sold last month\n     * Current price\n     * Stock availability\n     * Review count\n     * Average rating\n     * Sales rank\n\n2. 💬 Then, the **OpenAI Chat Model** intelligently evaluates this data and gives a **performance rating out of 10**, simulating a product analyst's decision-making.\n\n3. 📦 Finally, the **Structured Output Parser** transforms the AI’s natural language response into **clean JSON fields** that n8n can write back to your Google Sheet.\n\n🧠 **Why This Is Useful:**\nThis section automates **competitive product research**, letting you know which products are worth stocking, promoting, or avoiding — without manually checking every listing.\n\n🛠️ **Icons Involved:**\n\n* 🤖 AI Agent\n* 🧠 OpenAI Chat\n* 🌐 MCP Scraper (Bright Data)\n* 📤 JSON Parser\n\n---\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "d6bd1b54-2b77-490f-acf8-001c94affccd",
      "name": "Notizzettel2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        960,
        -720
      ],
      "parameters": {
        "color": 6,
        "width": 260,
        "height": 920,
        "content": "### 📈 **SECTION 3: Update Google Sheet with Final Data**\n\n**Node: `Update Sheet with Product Insights`**\n\n📌 **What Happens Here:**\nOnce scraping and AI evaluation are done, the workflow **updates the original Google Sheet** with all the new fields:\n\n| Column                  | Description                                        |\n| ----------------------- | -------------------------------------------------- |\n| `Units Sold`            | Estimated number of units sold in the last 30 days |\n| `Current Price`         | Latest listed price on Amazon                      |\n| `Stock Availability`    | Whether product is in stock, and how many units    |\n| `Review Count & Rating` | Total reviews and average rating                   |\n| `Sales Rank`            | Rank in overall and subcategory                    |\n| `Performance Rating`    | AI-generated score out of 10 based on all factors  |\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "c696695f-78b4-4baf-83b6-7939311bf1b0",
      "name": "Notizzettel5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1280,
        -720
      ],
      "parameters": {
        "color": 7,
        "width": 380,
        "height": 240,
        "content": "## I’ll receive a tiny commission if you join Bright Data through this link—thanks for fueling more free content!\n\n### https://get.brightdata.com/1tndi4600b25"
      },
      "typeVersion": 1
    },
    {
      "id": "67d803eb-9a83-4fcd-8c73-e3f0f5bf6285",
      "name": "Notizzettel9",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1820,
        -620
      ],
      "parameters": {
        "color": 4,
        "width": 1300,
        "height": 320,
        "content": "=======================================\n            WORKFLOW ASSISTANCE\n=======================================\nFor any questions or support, please contact:\n    Yaron@nofluff.online\n\nExplore more tips and tutorials here:\n   - YouTube: https://www.youtube.com/@YaronBeen/videos\n   - LinkedIn: https://www.linkedin.com/in/yaronbeen/\n=======================================\n"
      },
      "typeVersion": 1
    },
    {
      "id": "adf14924-8511-4c24-878b-0c766f869ec0",
      "name": "Notizzettel4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1820,
        -280
      ],
      "parameters": {
        "color": 4,
        "width": 1289,
        "height": 2298,
        "content": "## 🚀 Amazon Product Performance Analyzer Workflow\n\n**Automate product research + scoring using AI, scraping, and Google Sheets.**\n\n---\n\n### 🔹 **SECTION 1: Trigger & Read Product URLs**\n\n**Nodes Combined:**\n\n* `Start Workflow (Manual Trigger)`\n* `Fetch Amazon URLs from Google Sheets`\n\n📌 **What Happens Here:**\nWhen you click **\"Execute workflow\"**, the automation kicks off. It reads a list of Amazon product URLs from a connected **Google Sheet** — each URL representing a product you want to analyze.\n\n🧠 **Why This Is Useful:**\nYou don't have to input product links manually every time. Just **paste your URLs in the Google Sheet**, and this step will automatically fetch them all. Perfect for monitoring dozens (or hundreds) of products.\n\n📋 **Fields Expected in Google Sheet:**\n\n* `URL` (Amazon product link)\n* *(Other columns will be auto-filled later)*\n\n🔧 **Icons Involved:**\n\n* ⚡ `Trigger`\n* 📄 `Google Sheets`\n\n---\n\n### 🤖 **SECTION 2: AI Agent + Scraper + Parser**\n\n**Node: `Amazon Product Analyzer (AI Agent)` + Sub-nodes:**\n\n* `OpenAI Chat Model`\n* `MCP Client (Bright Data)`\n* `Structured Output Parser`\n\n📌 **What Happens Here:**\n\n1. 🔍 The **AI Agent** passes each product URL to:\n\n   * 🛰️ The **MCP Client**, which uses **Bright Data's Mobile Carrier Proxy** to scrape data safely from Amazon (bypassing detection).\n   * 📊 The **data collected** includes:\n\n     * Units sold last month\n     * Current price\n     * Stock availability\n     * Review count\n     * Average rating\n     * Sales rank\n\n2. 💬 Then, the **OpenAI Chat Model** intelligently evaluates this data and gives a **performance rating out of 10**, simulating a product analyst's decision-making.\n\n3. 📦 Finally, the **Structured Output Parser** transforms the AI’s natural language response into **clean JSON fields** that n8n can write back to your Google Sheet.\n\n🧠 **Why This Is Useful:**\nThis section automates **competitive product research**, letting you know which products are worth stocking, promoting, or avoiding — without manually checking every listing.\n\n🛠️ **Icons Involved:**\n\n* 🤖 AI Agent\n* 🧠 OpenAI Chat\n* 🌐 MCP Scraper (Bright Data)\n* 📤 JSON Parser\n\n---\n\n### 📈 **SECTION 3: Update Google Sheet with Final Data**\n\n**Node: `Update Sheet with Product Insights`**\n\n📌 **What Happens Here:**\nOnce scraping and AI evaluation are done, the workflow **updates the original Google Sheet** with all the new fields:\n\n| Column                  | Description                                        |\n| ----------------------- | -------------------------------------------------- |\n| `Units Sold`            | Estimated number of units sold in the last 30 days |\n| `Current Price`         | Latest listed price on Amazon                      |\n| `Stock Availability`    | Whether product is in stock, and how many units    |\n| `Review Count & Rating` | Total reviews and average rating                   |\n| `Sales Rank`            | Rank in overall and subcategory                    |\n| `Performance Rating`    | AI-generated score out of 10 based on all factors  |\n\n📈 **Why This Is Useful:**\nNow your spreadsheet becomes a **live product intelligence dashboard**, perfect for:\n\n* 👨‍💼 Product managers deciding what to sell\n* 📦 Suppliers checking demand\n* 📊 Marketers picking hot products to promote\n\n🛠️ **Icon Involved:**\n\n* 📝 Google Sheets (Update Node)\n\n---\n\n## 💡 Final Outcome:\n\nYour workflow is now a **smart Amazon trend analyzer**, delivering:\n\n* 🔁 Repeated product evaluation at scale\n* ⏱️ Instant product scoring without manual research\n* 📊 Clean, structured data ready for decision-making\n\n---\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "14b5ab60-1fac-4728-8ab3-b52f3ef476cd",
      "name": "Auto-fixing Output Parser",
      "type": "@n8n/n8n-nodes-langchain.outputParserAutofixing",
      "position": [
        800,
        260
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "312c6667-4ee1-4a44-85a5-99e612928451",
      "name": "OpenAI Chat Model1",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        760,
        480
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8sEyPDkC5p4w4Jha",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "a238a9f8-74ac-4a40-96fb-20c60f9b9dd9",
      "name": "Structured Output Parser",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        940,
        480
      ],
      "parameters": {
        "jsonSchemaExample": "[\n  {\n    \"product_name\": \"UGREEN Revodok 105 USB-C Hub\",\n    \"units_sold_last_month\": 8000,\n    \"current_price\": 9.98,\n    \"original_price\": 15.99,\n    \"stock_status\": \"In Stock\",\n    \"max_quantity_available\": 30,\n    \"review_count\": 18381,\n    \"rating\": 4.6,\n    \"sales_rank\": {\n      \"overall_category\": \"#11 in Computers & Accessories\",\n      \"subcategory\": \"#2 in Laptop Docking Stations\"\n    },\n    \"performance_rating\": 9\n  },\n  {\n    \"product_name\": \"Amazon Product (Unnamed)\",\n    \"units_sold_last_month\": 7000,\n    \"current_price\": 25.78,\n    \"stock_status\": \"In Stock\",\n    \"review_count\": 847,\n    \"rating\": 4.7,\n    \"sales_rank\": {\n      \"overall_category\": \"#7 in Tablet Chargers & Adapters\"\n    },\n    \"performance_rating\": 8.5\n  },\n  {\n    \"product_name\": \"UGREEN Power Bank 25,000mAh 145W Laptop Portable Charger\",\n    \"seller\": \"UGREEN GROUP LIMITED\",\n    \"units_sold_last_month\": 2000,\n    \"current_price\": 69.99,\n    \"original_price\": 99.99,\n    \"discount_percent\": 30,\n    \"stock_status\": \"In Stock\",\n    \"review_count\": 3657,\n    \"rating\": 4.4,\n    \"sales_rank\": {\n      \"overall_category\": \"#1,198 in Cell Phones & Accessories\",\n      \"subcategory\": \"#105 in Cell Phone Portable Power Banks\"\n    },\n    \"performance_rating\": 8\n  }\n]\n"
      },
      "typeVersion": 1.2
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "9c19383b-cabd-4530-8c1b-19eec6c6fb4a",
  "connections": {
    "a4117e05-67bc-42be-ba31-4b75be46ef9f": {
      "ai_languageModel": [
        [
          {
            "node": "a9a77a78-e60c-4329-ba4a-697c806bbf5c",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "312c6667-4ee1-4a44-85a5-99e612928451": {
      "ai_languageModel": [
        [
          {
            "node": "14b5ab60-1fac-4728-8ab3-b52f3ef476cd",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "a238a9f8-74ac-4a40-96fb-20c60f9b9dd9": {
      "ai_outputParser": [
        [
          {
            "node": "14b5ab60-1fac-4728-8ab3-b52f3ef476cd",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "14b5ab60-1fac-4728-8ab3-b52f3ef476cd": {
      "ai_outputParser": [
        [
          {
            "node": "a9a77a78-e60c-4329-ba4a-697c806bbf5c",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "353646b6-e2cb-42fd-aa8d-9d3c1693ef25": {
      "ai_tool": [
        [
          {
            "node": "a9a77a78-e60c-4329-ba4a-697c806bbf5c",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "a9a77a78-e60c-4329-ba4a-697c806bbf5c": {
      "main": [
        [
          {
            "node": "8ef0d68c-c9f6-4fda-8421-318da2875715",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "99c92ba4-9af0-4808-8f5a-5729ab7c922b": {
      "main": [
        [
          {
            "node": "a9a77a78-e60c-4329-ba4a-697c806bbf5c",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "1ab29609-739c-4f42-b398-d40e275d2531": {
      "main": [
        [
          {
            "node": "99c92ba4-9af0-4808-8f5a-5729ab7c922b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Häufig gestellte Fragen

Wie verwende ich diesen Workflow?

Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.

Für welche Szenarien ist dieser Workflow geeignet?

Fortgeschritten - Marktforschung, KI-Zusammenfassung

Ist es kostenpflichtig?

Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.

Workflow-Informationen
Schwierigkeitsgrad
Fortgeschritten
Anzahl der Nodes15
Kategorie2
Node-Typen8
Schwierigkeitsbeschreibung

Für erfahrene Benutzer, mittelkomplexe Workflows mit 6-15 Nodes

Autor
Yaron Been

Yaron Been

@yaron-nofluff

Building AI Agents and Automations | Growth Marketer | Entrepreneur | Book Author & Podcast Host If you need any help with Automations, feel free to reach out via linkedin: https://www.linkedin.com/in/yaronbeen/ And check out my Youtube channel: https://www.youtube.com/@YaronBeen/videos

Externe Links
Auf n8n.io ansehen

Diesen Workflow teilen

Kategorien

Kategorien: 34