Wissensbasis-Chatbot mit Jotform, RAG auf Supabase, Together AI und Gemini bauen

Fortgeschritten

Dies ist ein Automatisierungsworkflow mit 15 Nodes. Hauptsächlich werden Code, Supabase, Aggregate, HttpRequest, JotFormTrigger und andere Nodes verwendet. Wissensbasis-Chatbot mit Jotform, RAG auf Supabase, Together AI und Gemini bauen

Voraussetzungen
  • Supabase URL und API Key
  • Möglicherweise sind Ziel-API-Anmeldedaten erforderlich
  • Google Gemini API Key

Kategorie

-
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
  "meta": {
    "instanceId": "93f396852104089b8670e7494b0f3668b420464668ae4a8c1d6b4b5799f8e3ef",
    "templateCredsSetupCompleted": true
  },
  "nodes": [
    {
      "id": "1c57da69-7af2-47c8-8bc2-92e49449bd81",
      "name": "In Chunks aufteilen",
      "type": "n8n-nodes-base.code",
      "position": [
        2192,
        -496
      ],
      "parameters": {
        "jsCode": "const text = $input.first().json.text;\nconst chunkSize = 1000;\n\nlet chunks = [];\nfor (let i = 0; i < text.length; i += chunkSize) {\n  chunks.push({\n    json: { chunk: text.slice(i, i + chunkSize) }\n  });\n}\n\nreturn chunks;\n\n"
      },
      "typeVersion": 2
    },
    {
      "id": "d5ed1aaf-6089-4731-980d-b5c356b22403",
      "name": "Embedding des hochgeladenen Dokuments",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        2416,
        -496
      ],
      "parameters": {
        "url": "https://api.together.xyz/v1/embeddings",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "sendHeaders": true,
        "authentication": "genericCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "model",
              "value": "BAAI/bge-large-en-v1.5"
            },
            {
              "name": "input",
              "value": "={{ $json.chunk }}"
            }
          ]
        },
        "genericAuthType": "httpBearerAuth",
        "headerParameters": {
          "parameters": [
            {
              "name": "Content-Type",
              "value": "application/json"
            }
          ]
        }
      },
      "credentials": {
        "httpBearerAuth": {
          "id": "ePx2TlbqIiRjDGfW",
          "name": "Together API"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "0b1c609f-e335-4541-8dae-e3517ec4bb63",
      "name": "Embedding in der DB speichern",
      "type": "n8n-nodes-base.supabase",
      "position": [
        2624,
        -496
      ],
      "parameters": {
        "tableId": "RAG",
        "fieldsUi": {
          "fieldValues": [
            {
              "fieldId": "chunk",
              "fieldValue": "={{ $('Splitting into Chunks').item.json.chunk }}"
            },
            {
              "fieldId": "embeddings",
              "fieldValue": "={{ JSON.stringify($json.data[0].embedding) }}"
            }
          ]
        }
      },
      "credentials": {
        "supabaseApi": {
          "id": "sNLLVD1n1FkMp81B",
          "name": "abhi.vaar"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "3a39d174-434e-4c81-921c-8a354fad5ebe",
      "name": "Aggregieren",
      "type": "n8n-nodes-base.aggregate",
      "position": [
        2064,
        64
      ],
      "parameters": {
        "options": {},
        "fieldsToAggregate": {
          "fieldToAggregate": [
            {
              "fieldToAggregate": "chunk"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "4ce2ab5b-bb1e-46ce-9dd8-2cfdee5510a2",
      "name": "Einbettungen durchsuchen",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1840,
        64
      ],
      "parameters": {
        "url": "https://enter-your-supabase-host/rest/v1/rpc/matchembeddings1",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "authentication": "predefinedCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "=query_embedding",
              "value": "={{ $json.data[0].embedding }}"
            },
            {
              "name": "match_count",
              "value": "5"
            }
          ]
        },
        "nodeCredentialType": "supabaseApi"
      },
      "credentials": {
        "supabaseApi": {
          "id": "sNLLVD1n1FkMp81B",
          "name": "abhi.vaar"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "76c8df3f-cf64-4848-b077-d04e9de88d12",
      "name": "Benutzernachricht einbetten",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1616,
        64
      ],
      "parameters": {
        "url": "https://api.together.xyz/v1/embeddings",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "authentication": "genericCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "model",
              "value": "BAAI/bge-large-en-v1.5"
            },
            {
              "name": "input",
              "value": "={{ $json.chatInput }}"
            }
          ]
        },
        "genericAuthType": "httpBearerAuth"
      },
      "credentials": {
        "httpBearerAuth": {
          "id": "ePx2TlbqIiRjDGfW",
          "name": "Together API"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "d8dba80c-597e-470b-852b-6d53363238bc",
      "name": "Google Gemini-Chat-Modell",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        2272,
        288
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "googlePalmApi": {
          "id": "qsaK3VMNWQDWLweQ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "f74c0006-15e0-4f48-8c02-b0b765154c5b",
      "name": "KI-Agent",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        2272,
        64
      ],
      "parameters": {
        "text": "=You are a helpful and professional customer support agent. Use the following context to answer the user's question. \n\nHandle greetings without the need of the context...\n\nContext:\n{{ $json.chunk }}\n\nUser's message:\n{{ $('When chat message received').item.json.chatInput }}\n\nFormat your reply in WhatsApp style:\n- Use _italics_ for emphasis\n- Use *bold* for key points\n- Use • for bullet lists (no markdown dashes or hashes)\n- Keep responses short, clear, and conversational, like real WhatsApp support\n- Avoid markdown headers or code blocks\n\nGive a clear, accurate, and friendly response based only on the context.  \nIf the answer cannot be found in the context, reply: _\"I don't know based on the provided information.\"_\n",
        "options": {},
        "promptType": "define"
      },
      "typeVersion": 2.2
    },
    {
      "id": "81c63733-c5c8-4a4d-b634-e3d93d9bb1c6",
      "name": "Text aus PDF-Datei extrahieren",
      "type": "n8n-nodes-base.extractFromFile",
      "position": [
        2000,
        -496
      ],
      "parameters": {
        "options": {},
        "operation": "pdf"
      },
      "typeVersion": 1
    },
    {
      "id": "490c541e-fae8-4965-9840-9e13d562acdd",
      "name": "Bei Empfang einer Chat-Nachricht",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        1392,
        64
      ],
      "webhookId": "2032c492-7d92-4d79-b545-5e0b9807253f",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.3
    },
    {
      "id": "8add4f5e-d2f8-4ea8-a6e1-6d4912d60393",
      "name": "Haftnotiz",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1296,
        -768
      ],
      "parameters": {
        "width": 1584,
        "height": 512,
        "content": "### Part 1: Feeding the AI Knowledge (The \"Librarian\" part)\n\nThis part of the workflow runs whenever someone uploads a new PDF contract using your Jotform form. Its only job is to read, understand, and store the information from that document.\n\n* A user uploads a PDF contract through a JotForm, which is then downloaded.\n* The system extracts the raw text and splits it into smaller, more manageable chunks.\n* Each text chunk is converted into a numerical representation, called an embedding, that captures its semantic meaning.\n* These embeddings and their original text are stored in a Supabase vector database, effectively creating a searchable knowledge library.\n"
      },
      "typeVersion": 1
    },
    {
      "id": "d764c67f-cca8-476e-8d63-78d2733f6b64",
      "name": "Haftnotiz1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1296,
        -208
      ],
      "parameters": {
        "width": 1600,
        "height": 656,
        "content": "---\n\n### Part 2: Asking the AI a Question (The \"Researcher\" part)\n\nThis part of the workflow runs whenever a user sends a message in a chat interface. Its job is to find the right information from the library and generate an answer.\n\n* A user asks a question, which the system converts into a numerical embedding to understand its meaning.\n* This embedding is used to search a vector database, retrieving the most relevant chunks of text from the stored documents.\n* The retrieved text chunks are then provided to an AI agent as the sole context for answering the question.\n* The AI generates a precise and accurate answer based only on the provided context, ensuring it doesn't invent information."
      },
      "typeVersion": 1
    },
    {
      "id": "d1f68d16-6baa-4420-8606-dbc7ca5791c7",
      "name": "JotForm-Trigger",
      "type": "n8n-nodes-base.jotFormTrigger",
      "position": [
        1376,
        -496
      ],
      "webhookId": "52c8e2e7-7277-4dfd-8336-c3857f945102",
      "parameters": {
        "form": "252862840518058",
        "onlyAnswers": false
      },
      "credentials": {
        "jotFormApi": {
          "id": "4612J1BsqtC505ac",
          "name": "secondary"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "8f035b6b-c3c0-449a-acb4-0c359c309e32",
      "name": "Neue Wissensdatenbank abrufen",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1584,
        -496
      ],
      "parameters": {
        "url": "=https://api.jotform.com/submission/{{ $json.submissionID }}?apiKey=enter-your-jotfomr-api",
        "options": {}
      },
      "typeVersion": 4.2
    },
    {
      "id": "b826edc5-d97f-498c-bea1-b3f3d1430635",
      "name": "Link der hochgeladenen Wissensdatenbankdatei abrufen",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1792,
        -496
      ],
      "parameters": {
        "url": "={{ $json.content.answers['6'].answer[0] }}",
        "options": {
          "response": {
            "response": {
              "responseFormat": "file"
            }
          }
        },
        "sendHeaders": true,
        "headerParameters": {
          "parameters": [
            {
              "name": "APIKEY",
              "value": "enter-your-jotfomr-api"
            }
          ]
        }
      },
      "typeVersion": 4.2
    }
  ],
  "pinData": {},
  "connections": {
    "f74c0006-15e0-4f48-8c02-b0b765154c5b": {
      "main": [
        []
      ]
    },
    "3a39d174-434e-4c81-921c-8a354fad5ebe": {
      "main": [
        [
          {
            "node": "f74c0006-15e0-4f48-8c02-b0b765154c5b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "d1f68d16-6baa-4420-8606-dbc7ca5791c7": {
      "main": [
        [
          {
            "node": "8f035b6b-c3c0-449a-acb4-0c359c309e32",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings durchsuchen": {
      "main": [
        [
          {
            "node": "3a39d174-434e-4c81-921c-8a354fad5ebe",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "76c8df3f-cf64-4848-b077-d04e9de88d12": {
      "main": [
        [
          {
            "node": "Embeddings durchsuchen",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "1c57da69-7af2-47c8-8bc2-92e49449bd81": {
      "main": [
        [
          {
            "node": "d5ed1aaf-6089-4731-980d-b5c356b22403",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "8f035b6b-c3c0-449a-acb4-0c359c309e32": {
      "main": [
        [
          {
            "node": "b826edc5-d97f-498c-bea1-b3f3d1430635",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Google Gemini Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "f74c0006-15e0-4f48-8c02-b0b765154c5b",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "81c63733-c5c8-4a4d-b634-e3d93d9bb1c6": {
      "main": [
        [
          {
            "node": "1c57da69-7af2-47c8-8bc2-92e49449bd81",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "490c541e-fae8-4965-9840-9e13d562acdd": {
      "main": [
        [
          {
            "node": "76c8df3f-cf64-4848-b077-d04e9de88d12",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "d5ed1aaf-6089-4731-980d-b5c356b22403": {
      "main": [
        [
          {
            "node": "0b1c609f-e335-4541-8dae-e3517ec4bb63",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "b826edc5-d97f-498c-bea1-b3f3d1430635": {
      "main": [
        [
          {
            "node": "81c63733-c5c8-4a4d-b634-e3d93d9bb1c6",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Häufig gestellte Fragen

Wie verwende ich diesen Workflow?

Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.

Für welche Szenarien ist dieser Workflow geeignet?

Fortgeschritten

Ist es kostenpflichtig?

Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.

Workflow-Informationen
Schwierigkeitsgrad
Fortgeschritten
Anzahl der Nodes15
Kategorie-
Node-Typen10
Schwierigkeitsbeschreibung

Für erfahrene Benutzer, mittelkomplexe Workflows mit 6-15 Nodes

Externe Links
Auf n8n.io ansehen

Diesen Workflow teilen

Kategorien

Kategorien: 34