RSS-zu-LinkedIn-Autoposter

Experte

Dies ist ein Social Media, Multimodal AI-Bereich Automatisierungsworkflow mit 19 Nodes. Hauptsächlich werden If, Code, LinkedIn, Aggregate, HttpRequest und andere Nodes verwendet. Automatische Curation und Publikation auf LinkedIn Unternehmensseite via RSS + Gemini AI + Templated.io

Voraussetzungen
  • LinkedIn API-Anmeldedaten
  • Möglicherweise sind Ziel-API-Anmeldedaten erforderlich
  • Google Gemini API Key
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
  "meta": {
    "templateCredsSetupCompleted": false
  },
  "name": "RSS to LinkedIn Auto-Poster",
  "nodes": [
    {
      "name": "Haftnotiz",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -496,
        -360
      ],
      "parameters": {
        "width": 384,
        "height": 704,
        "content": "## 🧠 Workflow Overview  \n\nThis workflow automatically curates articles from an RSS feed and turns them into short, ready-to-post LinkedIn updates using **Gemini AI**.\n\n### 🔁 What it does  \n- Fetches fresh articles twice a week \n- Uses AI to pick the most relevant one for your audience  \n- Summarizes it into a crisp LinkedIn-style post  \n- Checks post quality → only publishes if score ≥ 7/10  \n- Creates a graphic using Templated\n- Auto-posts to your LinkedIn Page \n\n### ⚙️ What you need  \n- Gemini API credentials  \n- LinkedIn OAuth2 connection  \n- Any RSS feed URL (replace the default)\n- Templated API\n"
      },
      "typeVersion": 1,
      "id": "Haftnotiz-0"
    },
    {
      "name": "Haftnotiz1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        208,
        176
      ],
      "parameters": {
        "color": 7,
        "width": 464,
        "height": 80,
        "content": "## Curator\nRSS Read curates articles and sends to Article Finder"
      },
      "typeVersion": 1,
      "id": "Haftnotiz1-1"
    },
    {
      "name": "Haftnotiz2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1264,
        16
      ],
      "parameters": {
        "color": 7,
        "width": 464,
        "height": 80,
        "content": "## Creator & Optimizer\nCreates Content & Optimizes"
      },
      "typeVersion": 1,
      "id": "Haftnotiz2-2"
    },
    {
      "name": "Haftnotiz3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2176,
        160
      ],
      "parameters": {
        "color": 7,
        "width": 464,
        "height": 80,
        "content": "## Designer & Poster\nCreates Design & Posts on LinkedIn"
      },
      "typeVersion": 1,
      "id": "Haftnotiz3-3"
    },
    {
      "name": "Zeitplan-Trigger",
      "type": "n8n-nodes-base.scheduleTrigger",
      "position": [
        0,
        300
      ],
      "parameters": {
        "rule": {
          "interval": [
            {
              "field": "cronExpression",
              "expression": "0 11 * * TUE"
            },
            {
              "field": "cronExpression",
              "expression": "0 11 * * THU"
            }
          ]
        }
      },
      "typeVersion": 1.2,
      "id": "Zeitplan-Trigger-4"
    },
    {
      "name": "RSS-Read",
      "type": "n8n-nodes-base.rssFeedRead",
      "position": [
        224,
        300
      ],
      "parameters": {
        "url": "https://blog.hubspot.com/marketing/rss.xml",
        "options": {}
      },
      "retryOnFail": true,
      "typeVersion": 1.2,
      "id": "RSS-Read-5"
    },
    {
      "name": "Aggregieren",
      "type": "n8n-nodes-base.aggregate",
      "position": [
        448,
        300
      ],
      "parameters": {
        "options": {},
        "fieldsToAggregate": {
          "fieldToAggregate": [
            {
              "fieldToAggregate": "title"
            },
            {
              "fieldToAggregate": "content"
            },
            {
              "fieldToAggregate": "link"
            }
          ]
        }
      },
      "typeVersion": 1,
      "id": "Aggregieren-6"
    },
    {
      "name": "News zu 1 Item gruppieren",
      "type": "n8n-nodes-base.code",
      "position": [
        672,
        300
      ],
      "parameters": {
        "jsCode": "// Inputs expected from Aggregate/RSS: arrays: title[], content[], link[]\nconst all = items[0].json;              // aggregated item\nconst titles = all.title || [];\nconst contents = all.content || [];\nconst links = all.link || [];\n\nconst articles = [];\nconst lines = [];\n\nconst maxLen = Math.max(titles.length, contents.length, links.length);\nfor (let i = 0; i < maxLen; i++) {\n  const obj = {\n    id: i + 1,                          // stable ID (1..N). Use guid if you have one.\n    title: titles[i] ?? \"\",\n    content: contents[i] ?? \"\",\n    link: links[i] ?? \"\"\n  };\n  articles.push(obj);\n  // Short preview for the AI to choose from:\n  const preview = (obj.content || \"\").replace(/\\s+/g, \" \").slice(0, 220);\n  lines.push(`${obj.id}. ${obj.title}\\n${preview}${preview.length === 220 ? \"…\" : \"\"}`);\n}\n\nreturn [\n  {\n    json: {\n      articles,                         // keep the structured mapping\n      forAI: lines.join(\"\\n\\n\")         // human-readable list for the model\n    }\n  }\n];"
      },
      "typeVersion": 2,
      "id": "News-zu-1-Item-gruppieren-7"
    },
    {
      "name": "Best Article Finder",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        896,
        300
      ],
      "parameters": {
        "text": "=You are (company name) content curator. Select the BEST article for our audience.\n\nCOMPANY AUDIENCE:\n\n\nSELECTION CRITERIA:\nCHECK:\n- Can someone practically apply this TODAY or is it just knowledge?\n- Will they want to save this?\n\nSKIP ARTICLES ABOUT:\n- Pure theory without practical steps\n\nPick only 1 and give only {{ $json.articles[0].link }} as output\n\n{{ $json.forAI }}\n\n",
        "options": {},
        "promptType": "define"
      },
      "typeVersion": 2.2,
      "id": "Best-Article-Finder-8"
    },
    {
      "name": "Google Gemini-Chat-Modell",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        968,
        524
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-1.5-flash"
      },
      "typeVersion": 1,
      "id": "Google-Gemini-Chat-Modell-9"
    },
    {
      "name": "Google Gemini-Chat-Modell1",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1320,
        400
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1,
      "id": "Google-Gemini-Chat-Modell1-10"
    },
    {
      "name": "Content Creator",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        1248,
        176
      ],
      "parameters": {
        "text": "=Turn blog into quick byte below 200 words. \n\nCOMPANY AUDIENCE:\n\n\nWRITING RULES:\n- Write for the audience keeping in mind that they need opinion/insights, they don't have time to spare so be very on point and crisp and profound\n- Include specific numbers/time when possible\n- Keep it to the point like in news/bulletin \n- Always use bullets/classified structure, no extra output needed\n\nHere is the blog to use:  {{ $json.output }}",
        "options": {},
        "promptType": "define"
      },
      "retryOnFail": true,
      "typeVersion": 2.2,
      "id": "Content-Creator-11"
    },
    {
      "name": "Post Optimizer",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        1600,
        176
      ],
      "parameters": {
        "text": "=Analyze this post deeply\n\nPost = {{ $json.output }}\n\nCHECK & OPTIMIZE FOR:\n- Can someone practically apply this TODAY or is it just knowledge?\n- Will THEY want to save this?\n- Does this have fluff/filler words that inflate sentences? Keep sentences small and easy to read.\n- Does it look AI Generated? Prefer human sentence construction\n- No emoji, use → or other symbols for bullets, don't use * or em dash in post, space after every bullet\n- Analyze First line: should not be in text:text format, only mention crux like \"loop marketing strategy\", or use title like \"here's why you need loop marketing\"\n\nAlso create a headline for image for this post, keep it crisp and catchy\n\nOUTPUT:\n{\n  \"final_post\": \"[LinkedIn-ready post]\",\n\"image_text\": \"[Headline for image= what the post is about]\"\n  \"confidence_score\": [1-10],\n  \"post_now\": [true if score >= 7]\n} ",
        "options": {},
        "promptType": "define",
        "hasOutputParser": true
      },
      "retryOnFail": true,
      "typeVersion": 2.2,
      "id": "Post-Optimizer-12"
    },
    {
      "name": "Google Gemini-Chat-Modell2",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1608,
        400
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-1.5-pro"
      },
      "typeVersion": 1,
      "id": "Google-Gemini-Chat-Modell2-13"
    },
    {
      "name": "Structured Output Parser",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        1736,
        400
      ],
      "parameters": {
        "jsonSchemaExample": "{\n  \"final_post\": \"[LinkedIn-ready post]\",\n  \"image_text\": \"[Image Title Catcy]\",\n  \"confidence_score\": [10],\n  \"post_now\": [true]\n} "
      },
      "typeVersion": 1.3,
      "id": "Structured-Output-Parser-14"
    },
    {
      "name": "If",
      "type": "n8n-nodes-base.if",
      "position": [
        1952,
        300
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "operator": {
                "type": "boolean",
                "operation": "true",
                "singleValue": true
              },
              "leftValue": "={{ $json.output.post_now[0] }}",
              "rightValue": "true"
            }
          ]
        }
      },
      "typeVersion": 2.2,
      "id": "If-15"
    },
    {
      "name": "Templated",
      "type": "n8n-nodes-templated.templated",
      "position": [
        2176,
        300
      ],
      "parameters": {
        "layers": {
          "layer": [
            {
              "text": "={{ $json.output.image_text }}",
              "layerName": "paragraph-text"
            }
          ]
        },
        "template": "",
        "requestOptions": {}
      },
      "retryOnFail": true,
      "typeVersion": 1,
      "id": "Templated-16"
    },
    {
      "name": "Create a Post",
      "type": "n8n-nodes-base.linkedIn",
      "position": [
        2624,
        300
      ],
      "parameters": {
        "text": "={{ $('Post optimizer').item.json.output.final_post }}",
        "postAs": "organization",
        "organization": "",
        "additionalFields": {},
        "shareMediaCategory": "IMAGE"
      },
      "typeVersion": 1,
      "id": "Create-a-Post-17"
    },
    {
      "name": "HTTP-Anfrage",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        2400,
        300
      ],
      "parameters": {
        "url": "={{ $json.render_url }}",
        "options": {
          "response": {
            "response": {
              "responseFormat": "file"
            }
          }
        }
      },
      "typeVersion": 4.2,
      "id": "HTTP-Anfrage-18"
    }
  ],
  "pinData": {},
  "connections": {
    "If-15": {
      "main": [
        [
          {
            "node": "Templated-16",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "Best-Article-Finder-8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "RSS-Read-5": {
      "main": [
        [
          {
            "node": "Aggregate",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Aggregate": {
      "main": [
        [
          {
            "node": "News-zu-1-Item-gruppieren-7",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Templated-16": {
      "main": [
        [
          {
            "node": "HTTP Request",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "HTTP Request": {
      "main": [
        [
          {
            "node": "Create-a-Post-17",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Post-Optimizer-12": {
      "main": [
        [
          {
            "node": "If-15",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Content-Creator-11": {
      "main": [
        [
          {
            "node": "Post-Optimizer-12",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Zeitplan-Trigger-4": {
      "main": [
        [
          {
            "node": "RSS-Read-5",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Best-Article-Finder-8": {
      "main": [
        [
          {
            "node": "Content-Creator-11",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Google Gemini Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "Best-Article-Finder-8",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Structured-Output-Parser-14": {
      "ai_outputParser": [
        [
          {
            "node": "Post-Optimizer-12",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "Google Gemini Chat Model1": {
      "ai_languageModel": [
        [
          {
            "node": "Content-Creator-11",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Google Gemini Chat Model2": {
      "ai_languageModel": [
        [
          {
            "node": "Post-Optimizer-12",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "News-zu-1-Item-gruppieren-7": {
      "main": [
        [
          {
            "node": "Best-Article-Finder-8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Häufig gestellte Fragen

Wie verwende ich diesen Workflow?

Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.

Für welche Szenarien ist dieser Workflow geeignet?

Experte - Soziale Medien, Multimodales KI

Ist es kostenpflichtig?

Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.

Workflow-Informationen
Schwierigkeitsgrad
Experte
Anzahl der Nodes19
Kategorie2
Node-Typen12
Schwierigkeitsbeschreibung

Für fortgeschrittene Benutzer, komplexe Workflows mit 16+ Nodes

Externe Links
Auf n8n.io ansehen

Diesen Workflow teilen

Kategorien

Kategorien: 34