[3/3] Herramienta de detección de anomalías (conjunto de datos de cultivos)

Avanzado

Este es unAI, SecOpsflujo de automatización del dominio deautomatización que contiene 17 nodos.Utiliza principalmente nodos como Set, Code, HttpRequest, ExecuteWorkflowTrigger, combinando tecnología de inteligencia artificial para lograr automatización inteligente. Herramienta de detección de anomalías (imágenes) [3/3 - Anomalía]

Requisitos previos
  • Pueden requerirse credenciales de autenticación para la API de destino
Vista previa del flujo de trabajo
Visualización de las conexiones entre nodos, con soporte para zoom y panorámica
Exportar flujo de trabajo
Copie la siguiente configuración JSON en n8n para importar y usar este flujo de trabajo
{
  "id": "G8jRDBvwsMkkMiLN",
  "meta": {
    "instanceId": "205b3bc06c96f2dc835b4f00e1cbf9a937a74eeb3b47c99d0c30b0586dbf85aa"
  },
  "name": "[3/3] Anomaly detection tool (crops dataset)",
  "tags": [
    {
      "id": "spMntyrlE9ydvWFA",
      "name": "anomaly-detection",
      "createdAt": "2024-12-08T22:05:15.945Z",
      "updatedAt": "2024-12-09T12:50:19.287Z"
    }
  ],
  "nodes": [
    {
      "id": "e01bafec-eb24-44c7-b3c4-a60f91666350",
      "name": "Nota Adhesiva1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1200,
        180
      ],
      "parameters": {
        "color": 6,
        "width": 400,
        "height": 740,
        "content": "We are working here with crops dataset: \nExisting (so not anomalies) crops images in dataset are:\n- 'pearl_millet(bajra)',\n- 'tobacco-plant',\n- 'cherry',\n- 'cotton',\n- 'banana',\n- 'cucumber',\n- 'maize',\n- 'wheat',\n- 'clove',\n- 'jowar',\n- 'olive-tree',\n- 'soyabean',\n- 'coffee-plant',\n- 'rice',\n- 'lemon',\n- 'mustard-oil',\n- 'vigna-radiati(mung)',\n- 'coconut',\n- 'gram',\n- 'pineapple',\n- 'sugarcane',\n- 'sunflower',\n- 'chilli',\n- 'fox_nut(makhana)',\n- 'jute',\n- 'papaya',\n- 'tea',\n- 'cardamom',\n- 'almond'\n"
      },
      "typeVersion": 1
    },
    {
      "id": "b9943781-de1f-4129-9b81-ed836e9ebb11",
      "name": "Incrustar imagen",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        680,
        60
      ],
      "parameters": {
        "url": "https://api.voyageai.com/v1/multimodalembeddings",
        "method": "POST",
        "options": {},
        "jsonBody": "={{\n{\n  \"inputs\": [\n    {\n      \"content\": [\n        {\n          \"type\": \"image_url\",\n          \"image_url\": $('Image URL hardcode').first().json.imageURL\n        }\n      ]\n    }\n  ],\n  \"model\": \"voyage-multimodal-3\",\n  \"input_type\": \"document\"\n}\n}}",
        "sendBody": true,
        "specifyBody": "json",
        "authentication": "genericCredentialType",
        "genericAuthType": "httpHeaderAuth"
      },
      "credentials": {
        "httpHeaderAuth": {
          "id": "Vb0RNVDnIHmgnZOP",
          "name": "Voyage API"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "47b72bc2-4817-48c6-b517-c1328e402468",
      "name": "Obtener similitud de medoides",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        940,
        60
      ],
      "parameters": {
        "url": "={{ $('Variables for medoids').first().json.qdrantCloudURL }}/collections/{{ $('Variables for medoids').first().json.collectionName }}/points/query",
        "method": "POST",
        "options": {},
        "jsonBody": "={{\n{\n  \"query\": $json.data[0].embedding,\n  \"using\": \"voyage\",\n  \"limit\": $('Info About Crop Labeled Clusters').first().json.cropsNumber,\n  \"with_payload\": true,\n  \"filter\": {\n      \"must\": [\n          {      \n          \"key\": $('Variables for medoids').first().json.clusterCenterType,\n          \"match\": {\n              \"value\": true\n              }\n          }\n      ]\n  }\n}\n}}",
        "sendBody": true,
        "specifyBody": "json",
        "authentication": "predefinedCredentialType",
        "nodeCredentialType": "qdrantApi"
      },
      "credentials": {
        "qdrantApi": {
          "id": "it3j3hP9FICqhgX6",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "42d7eb27-ec38-4406-b5c4-27eb45358e93",
      "name": "Comparar puntuaciones",
      "type": "n8n-nodes-base.code",
      "position": [
        1140,
        60
      ],
      "parameters": {
        "language": "python",
        "pythonCode": "points = _input.first()['json']['result']['points']\nthreshold_type = _('Variables for medoids').first()['json']['clusterThresholdCenterType']\n\nmax_score = -1\ncrop_with_max_score = None\nundefined = True\n\nfor center in points:\n    if center['score'] >= center['payload'][threshold_type]:\n        undefined = False\n        if center['score'] > max_score:\n            max_score = center['score']\n            crop_with_max_score = center['payload']['crop_name']\n\nif undefined:\n    result_message = \"ALERT, we might have a new undefined crop!\"\nelse:\n    result_message = f\"Looks similar to {crop_with_max_score}\"\n\nreturn [{\n    \"json\": {\n        \"result\": result_message\n    }\n}]\n"
      },
      "typeVersion": 2
    },
    {
      "id": "23aa604a-ff0b-4948-bcd5-af39300198c0",
      "name": "Nota Adhesiva4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1200,
        -220
      ],
      "parameters": {
        "width": 400,
        "height": 380,
        "content": "## Crop Anomaly Detection Tool\n### This is the tool that can be used directly for anomalous crops detection. \nIt takes as input (any) **image URL** and returns a **text message** telling if whatever this image depicts is anomalous to the crop dataset stored in Qdrant. \n\n* An Image URL is received via the Execute Workflow Trigger which is used to generate embedding vectors via the Voyage.ai Embeddings API.\n* The returned vectors are used to query the Qdrant collection to determine if the given crop is known by comparing it to **threshold scores** of each image class (crop type).\n* If the image scores lower than all thresholds, then the image is considered an anomaly for the dataset."
      },
      "typeVersion": 1
    },
    {
      "id": "3a79eca2-44f9-4aee-8a0d-9c7ca2f9149d",
      "name": "Variables para medoides",
      "type": "n8n-nodes-base.set",
      "position": [
        -200,
        60
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "dbbc1e7b-c63e-4ff1-9524-8ef3e9f6cd48",
              "name": "clusterCenterType",
              "type": "string",
              "value": "is_medoid"
            },
            {
              "id": "a994ce37-2530-4030-acfb-ec777a7ddb05",
              "name": "qdrantCloudURL",
              "type": "string",
              "value": "https://152bc6e2-832a-415c-a1aa-fb529f8baf8d.eu-central-1-0.aws.cloud.qdrant.io"
            },
            {
              "id": "12f0a9e6-686d-416e-a61b-72d034ec21ba",
              "name": "collectionName",
              "type": "string",
              "value": "=agricultural-crops"
            },
            {
              "id": "4c88a617-d44f-4776-b457-8a1dffb1d03c",
              "name": "clusterThresholdCenterType",
              "type": "string",
              "value": "is_medoid_cluster_threshold"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "13b25434-bd66-4293-93f1-26c67b9ec7dd",
      "name": "Nota Adhesiva3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -340,
        260
      ],
      "parameters": {
        "color": 6,
        "width": 360,
        "height": 200,
        "content": "**clusterCenterType** - either\n* \"is_text_anchor_medoid\" or\n* \"is_medoid\"\n\n\n**clusterThresholdCenterType** - either\n* \"is_text_anchor_medoid_cluster_threshold\" or\n* \"is_medoid_cluster_threshold\""
      },
      "typeVersion": 1
    },
    {
      "id": "869b0962-6cae-487d-8230-539a0cc4c14c",
      "name": "Información sobre Clústeres Etiquetados de Cultivos",
      "type": "n8n-nodes-base.set",
      "position": [
        440,
        60
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "5327b254-b703-4a34-a398-f82edb1d6d6b",
              "name": "=cropsNumber",
              "type": "number",
              "value": "={{ $json.result.hits.length }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "5d3956f8-f43b-439e-b176-a594a21d8011",
      "name": "Puntos Totales en la Colección",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        40,
        60
      ],
      "parameters": {
        "url": "={{ $json.qdrantCloudURL }}/collections/{{ $json.collectionName }}/points/count",
        "method": "POST",
        "options": {},
        "jsonBody": "={\n  \"exact\": true\n}",
        "sendBody": true,
        "specifyBody": "json",
        "authentication": "predefinedCredentialType",
        "nodeCredentialType": "qdrantApi"
      },
      "credentials": {
        "qdrantApi": {
          "id": "it3j3hP9FICqhgX6",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "14ba3db9-3965-4b20-b333-145616d45c3a",
      "name": "Conteos por Cada Cultivo",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        240,
        60
      ],
      "parameters": {
        "url": "={{ $('Variables for medoids').first().json.qdrantCloudURL }}/collections/{{ $('Variables for medoids').first().json.collectionName }}/facet",
        "method": "POST",
        "options": {},
        "jsonBody": "={{\n{\n  \"key\": \"crop_name\",\n  \"limit\": $json.result.count,\n  \"exact\": true\n}\n}}",
        "sendBody": true,
        "specifyBody": "json",
        "authentication": "predefinedCredentialType",
        "nodeCredentialType": "qdrantApi"
      },
      "credentials": {
        "qdrantApi": {
          "id": "it3j3hP9FICqhgX6",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "e37c6758-0556-4a56-ab14-d4df663cb53a",
      "name": "URL de imagen hardcode",
      "type": "n8n-nodes-base.set",
      "position": [
        -480,
        60
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "46ceba40-fb25-450c-8550-d43d8b8aa94c",
              "name": "imageURL",
              "type": "string",
              "value": "={{ $json.query.imageURL }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "b24ad1a7-0cf8-4acc-9c18-6fe9d58b10f2",
      "name": "Activador de Ejecución de Flujo de Trabajo",
      "type": "n8n-nodes-base.executeWorkflowTrigger",
      "position": [
        -720,
        60
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "50424f2b-6831-41bf-8de4-81f69d901ce1",
      "name": "Nota Adhesiva2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -240,
        -80
      ],
      "parameters": {
        "width": 180,
        "height": 120,
        "content": "Variables to access Qdrant's collection we uploaded & prepared for  anomaly detection in 2 previous pipelines\n"
      },
      "typeVersion": 1
    },
    {
      "id": "2e8ed3ca-1bba-4214-b34b-376a237842ff",
      "name": "Nota Adhesiva5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        40,
        -120
      ],
      "parameters": {
        "width": 560,
        "height": 140,
        "content": "These three nodes are needed just to figure out how many different classes (crops) we have in our Qdrant collection: **cropsNumber** (needed in *\"Get similarity of medoids\"* node. \n[Note] *\"Total Points in Collection\"* -> *\"Each Crop Counts\"* were used&explained already in *\"[2/4] Set up medoids (2 types) for anomaly detection (crops dataset)\"* pipeline.\n"
      },
      "typeVersion": 1
    },
    {
      "id": "e2fa5763-6e97-4ff5-8919-1cb85a3c6968",
      "name": "Nota Adhesiva6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        620,
        240
      ],
      "parameters": {
        "height": 120,
        "content": "Here, we're embedding the image passed to this workflow tool with the Voyage embedding model to compare the image to all crop images in the database."
      },
      "typeVersion": 1
    },
    {
      "id": "cdb6b8d3-f7f4-4d66-850f-ce16c8ed98b9",
      "name": "Nota Adhesiva7",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        920,
        220
      ],
      "parameters": {
        "width": 400,
        "height": 180,
        "content": "Checking how similar the image is to all the centres of clusters (crops).\nIf it's more similar to the thresholds we set up and stored in centres in the previous workflow, the image probably belongs to this crop class; otherwise, it's anomalous to the class. \nIf image is anomalous to all the classes, it's an anomaly."
      },
      "typeVersion": 1
    },
    {
      "id": "03b4699f-ba43-4f5f-ad69-6f81deea2641",
      "name": "Nota Adhesiva22",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -620,
        580
      ],
      "parameters": {
        "color": 4,
        "width": 540,
        "height": 300,
        "content": "### For anomaly detection\n1. The first pipeline is uploading (crops) dataset to Qdrant's collection.\n2. The second pipeline sets up cluster (class) centres in this Qdrant collection & cluster (class) threshold scores.\n3. **This is the anomaly detection tool, which takes any image as input and uses all preparatory work done with Qdrant (crops) collection.**\n\n### To recreate it\nYou'll have to upload [crops](https://www.kaggle.com/datasets/mdwaquarazam/agricultural-crops-image-classification) dataset from Kaggle to your own Google Storage bucket, and re-create APIs/connections to [Qdrant Cloud](https://qdrant.tech/documentation/quickstart-cloud/) (you can use **Free Tier** cluster), Voyage AI API & Google Cloud Storage\n\n**In general, pipelines are adaptable to any dataset of images**\n"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {
    "Execute Workflow Trigger": [
      {
        "json": {
          "query": {
            "imageURL": "https://storage.googleapis.com/n8n-qdrant-demo/agricultural-crops%2Fcotton%2Fimage%20(36).jpg"
          }
        }
      }
    ]
  },
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "f67b764b-9e1a-4db0-b9f2-490077a62f74",
  "connections": {
    "b9943781-de1f-4129-9b81-ed836e9ebb11": {
      "main": [
        [
          {
            "node": "47b72bc2-4817-48c6-b517-c1328e402468",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "14ba3db9-3965-4b20-b333-145616d45c3a": {
      "main": [
        [
          {
            "node": "869b0962-6cae-487d-8230-539a0cc4c14c",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "e37c6758-0556-4a56-ab14-d4df663cb53a": {
      "main": [
        [
          {
            "node": "3a79eca2-44f9-4aee-8a0d-9c7ca2f9149d",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "3a79eca2-44f9-4aee-8a0d-9c7ca2f9149d": {
      "main": [
        [
          {
            "node": "5d3956f8-f43b-439e-b176-a594a21d8011",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "b24ad1a7-0cf8-4acc-9c18-6fe9d58b10f2": {
      "main": [
        [
          {
            "node": "e37c6758-0556-4a56-ab14-d4df663cb53a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "47b72bc2-4817-48c6-b517-c1328e402468": {
      "main": [
        [
          {
            "node": "42d7eb27-ec38-4406-b5c4-27eb45358e93",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "5d3956f8-f43b-439e-b176-a594a21d8011": {
      "main": [
        [
          {
            "node": "14ba3db9-3965-4b20-b333-145616d45c3a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "869b0962-6cae-487d-8230-539a0cc4c14c": {
      "main": [
        [
          {
            "node": "b9943781-de1f-4129-9b81-ed836e9ebb11",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Preguntas frecuentes

¿Cómo usar este flujo de trabajo?

Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.

¿En qué escenarios es adecuado este flujo de trabajo?

Avanzado - Inteligencia Artificial, Operaciones de seguridad

¿Es de pago?

Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.

Información del flujo de trabajo
Nivel de dificultad
Avanzado
Número de nodos17
Categoría2
Tipos de nodos5
Descripción de la dificultad

Adecuado para usuarios avanzados, flujos de trabajo complejos con 16+ nodos

Autor

Qdrant DevRel, ML/NLP/math nerd with yapping skills

Enlaces externos
Ver en n8n.io

Compartir este flujo de trabajo

Categorías

Categorías: 34