Automatización de investigación de palabras clave para SEO con AI - The Vibe Marketer
Este es unAI, Marketingflujo de automatización del dominio deautomatización que contiene 34 nodos.Utiliza principalmente nodos como Set, Code, Merge, Slack, NocoDb, combinando tecnología de inteligencia artificial para lograr automatización inteligente. 基于 OpenAI y DataForSEO Analytics a NocoDB de全面 SEO 关键词研究
- •Bot Token de Slack o URL de Webhook
- •Punto final de HTTP Webhook (n8n generará automáticamente)
- •Clave de API de OpenAI
Nodos utilizados (34)
Categoría
{
"id": "nGpVbW7RTylKujyT",
"meta": {
"instanceId": "dcb7e9805ce8fe33e4ef843b02947aacc9de2ca8e3594435f3a36d9f33df54fc",
"templateCredsSetupCompleted": true
},
"name": "AI powered SEO Keyword Research Automation - The vibe Marketer",
"tags": [
{
"id": "SRzFKUr6fVtmWq2d",
"name": "works",
"createdAt": "2025-04-14T11:05:17.062Z",
"updatedAt": "2025-04-14T11:05:17.062Z"
}
],
"nodes": [
{
"id": "65aacfa5-4891-49f9-a614-2866c96142ee",
"name": "OpenAI Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
88,
455
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "o1",
"cachedResultName": "o1"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "AZynAxNG099jyj7B",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "5a0445ad-20c9-4e62-8e04-62451d3e8f7e",
"name": "Analizador de Salida Estructurada",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
208,
455
],
"parameters": {
"jsonSchemaExample": "{\n \"primary_keywords\": [\"string\"],\n \"long_tail_keywords\": [\n {\n \"keyword\": \"string\",\n \"intent\": \"string\"\n }\n ],\n \"question_based_keywords\": [\"string\"],\n \"related_topics\": [\"string\"]\n}\n"
},
"typeVersion": 1.2
},
{
"id": "38cd2c66-d4b7-47a9-a3eb-f58eb32f55ab",
"name": "Expansión de Temas",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
60,
235
],
"parameters": {
"text": "=I need to create comprehensive SEO keyword research for content about: \n{{ $json.primary_topic }}\n\nMy target audience is: {{ $json.target_audience }}\nThis will be used for a: {{ $json.content_type }}\nLocation: {{ $json.location }}\nLanguage: {{ $json.language }}\n\nPlease generate:\n1. A list of 20 primary keywords directly related to {{ $json.primary_topic }}\n2. 30 long-tail keyword variations with search intent (informational, commercial, transactional)\n3. 15 question-based keywords people might ask about this topic\n4. 10 related topics that could be used for supporting content\n\nFormat the output as a structured JSON with these categories. ",
"options": {},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.8
},
{
"id": "14811f51-5992-4e35-af8d-f05f5b488bc1",
"name": "Análisis de Competencia",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1100,
660
],
"parameters": {
"text": "=Analyze the following competitor content for the Primary Topic \"{{ $('Format Json and add Competitor URLs').item.json.primary_topic }}\":\n\nCompetitor: {{ $('Split the Competitor URLs').item.json.competitorUrls }}\nDATA: ```\n{{ $json.tasks[0].result.toJsonString() }}\n```\n\nPlease identify:\n1. Primary keywords they appear to be targeting\n2. Content gaps or missing topics they aren't covering\n3. Unique angles or approaches they're taking\n4. Questions they're answering (or not answering)\n\nFormat the output as a structured analysis. ",
"options": {},
"promptType": "define"
},
"typeVersion": 1.8
},
{
"id": "564866ac-c287-48a3-816c-78207dfce133",
"name": "Dificultad de Palabras Clave",
"type": "n8n-nodes-dataforseo.dataForSeo",
"position": [
656,
260
],
"parameters": {
"keywords": {
"values": [
{
"value": "={{ $json['output.primary_keywords'] }}"
}
]
},
"resource": "labs",
"operation": "get-keyword-difficulty",
"language_name_required": "={{ $('Set relevant fields').item.json.language }}",
"location_name_required": "={{ $('Set relevant fields').item.json.location }}"
},
"credentials": {
"dataForSeoApi": {
"id": "owHrK02rkWLlYrl3",
"name": "DataForSEO account"
}
},
"typeVersion": 1
},
{
"id": "d39e392c-c547-4edd-8fe9-014c26152915",
"name": "Volumen de Búsqueda y CPC",
"type": "n8n-nodes-dataforseo.dataForSeo",
"position": [
656,
60
],
"parameters": {
"date_to": {},
"keywords": {
"values": [
{
"value": "={{ $json['output.primary_keywords'] }}"
}
]
},
"resource": "keywords_data",
"date_from": {},
"language_name": "={{ $('Set relevant fields').item.json.language }}",
"location_name": "={{ $('Set relevant fields').item.json.location }}"
},
"credentials": {
"dataForSeoApi": {
"id": "owHrK02rkWLlYrl3",
"name": "DataForSEO account"
}
},
"typeVersion": 1
},
{
"id": "2985d85c-4373-4f18-9c27-188f19c920a6",
"name": "Dividir palabras clave principales",
"type": "n8n-nodes-base.splitOut",
"position": [
440,
160
],
"parameters": {
"options": {},
"fieldToSplitOut": "output.primary_keywords"
},
"typeVersion": 1
},
{
"id": "49819332-744d-45a5-b0ed-b74a1a57aad8",
"name": "OpenAI Chat Model2",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1920,
640
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "o1",
"cachedResultName": "o1"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "AZynAxNG099jyj7B",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "07576442-14b1-402a-a084-50fd775d6523",
"name": "Posicionamiento de Palabras Clave por URL",
"type": "n8n-nodes-dataforseo.dataForSeo",
"position": [
880,
660
],
"parameters": {
"limit": 10,
"target": "={{ $json.competitorUrls }}",
"resource": "labs",
"operation": "get-ranked-keywords",
"language_name_required": "={{ $('Format Json and add Competitor URLs').item.json.language }}",
"location_name_required": "={{ $('Format Json and add Competitor URLs').item.json.location }}"
},
"credentials": {
"dataForSeoApi": {
"id": "owHrK02rkWLlYrl3",
"name": "DataForSEO account"
}
},
"typeVersion": 1
},
{
"id": "1e1f4a81-31b9-450d-85ba-65dbe2b6e8c2",
"name": "Estrategia Final de Palabras Clave",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1940,
440
],
"parameters": {
"text": "=# Role: Act as an expert SEO Strategist and Content Planner.\n\n# Context:\n# You are creating an actionable SEO Keyword Strategy & Content Brief based on prior AI-driven keyword generation and competitor analysis.\n# The goal is content creation for the 'Primary Topic', targeting the specified 'Target Audience' and 'Content Type' in the given 'Location' and 'Language'.\n# Data provided includes initial keyword ideas (primary, long-tail, questions), keyword metrics (volume, difficulty), related topics, and competitor analysis insights (their likely keywords, content gaps, unique angles).\n\n# Input Parameters for this Task:\nPrimary Topic: {{ $json.primary_topic }}\nTarget Audience: {{ $json.target_audience }}\nContent Type: {{ $json.content_type }}\nLocation: {{ $json.location }}\nLanguage: {{ $json.language }}\nAnalyzed Compeitors: {{ $json.competitor_urls }}\n\n# Your Task:\n# Analyze the provided input parameters and the detailed 'DATA' section below.\n# Synthesize this information into a clear, concise, and actionable SEO Keyword Strategy & Content Brief.\n# Structure the output logically using Markdown. Focus on providing insights and actionable recommendations, not just listing data. Explain the 'why' behind key recommendations. Keep the language easy to understand, assuming the reader (e.g., a content writer or marketing manager) understands basic SEO concepts but isn't necessarily a deep expert.\n\n# Required Output Sections (Use Markdown Headers):\n\n## 1. Executive Summary\n - **Objective:** Briefly state the primary goal of creating content on this topic for this audience (e.g., \"Attract [Target Audience] seeking information on [Primary Topic]...\" or \"Position our brand as a thought leader for [Target Audience] regarding [Primary Topic]\").\n - **Key Opportunity:** Summarize the most significant keyword opportunity identified (e.g., \"Target the high-volume term '[Example Keyword]' while capturing related informational queries via long-tail variations.\")\n - **Competitor Angle:** Briefly mention the main strategic takeaway from the competitor analysis (e.g., \"Competitors focus heavily on [X], leaving an opportunity to address [Y] or provide a unique angle on [Z].\")\n\n## 2. Target Keyword Strategy & Rationale\n - **Primary Target Keywords:**\n - List the top 5-10 recommended primary keywords.\n - For each, include Search Volume (SV) and Keyword Difficulty (KD).\n - **Add brief commentary/rationale for each group or key term:** Why were these chosen? (e.g., \"High relevance and strong search volume despite moderate difficulty,\" or \"Balances primary topic focus with user search behavior.\")\n - **Secondary & Long-Tail Opportunities:**\n - List the top 10-15 recommended long-tail and secondary keywords.\n - Group them by likely Search Intent (e.g., Informational, Commercial, Transactional) if discernible from the input data.\n - **Add brief commentary on the overall opportunity:** What specific user needs or funnel stages do these address? Note any clusters with particularly low competition.\n - **Key Question Keywords:**\n - List the top 5 question-based keywords the content *must* answer.\n - **Add brief commentary:** Why are these questions crucial for the target audience or content goals?\n\n## 3. Competitive Landscape & Content Gaps\n - **Competitor Focus:** Briefly summarize the main keyword themes or angles competitors seem to be targeting, based on the provided analysis.\n - **Identified Gaps/Opportunities:** Highlight 1-3 specific content gaps, under-served intents, or unique angles identified from the competitor analysis that this content piece should leverage. Be specific (e.g., \"Competitors explain 'what', but not 'how to implement',\" or \"Lack of practical examples for [Target Audience]\").\n\n## 4. Content Outline & Actionable Recommendations\n - **Recommended Structure:** Propose a logical H2/H3 structure or outline for the content piece, designed to cover the target keywords and address user intent effectively.\n - **Keyword Integration:** Briefly suggest how to naturally incorporate the different keyword types (primary, long-tail, questions) within the proposed structure.\n - **Content Enhancement:** Provide 2-3 specific, actionable recommendations to make the content stand out for the target audience and potentially outperform competitors (e.g., \"Include step-by-step instructions,\" \"Add original data/charts,\" \"Feature quotes from [Target Audience Role],\" \"Create a downloadable checklist\").\n\n## 5. Proposed SEO Titles\n - List 3-5 compelling, SEO-optimized title options for the content piece. Ensure they are relevant, incorporate keywords naturally, and entice clicks.\n\n# DATA for Analysis:\n# (Analyze the following JSON data containing keyword suggestions, metrics, and competitor analysis results)\n```json\n{{ $json.data.toJsonString() }}\n\n{{ $json.output.toJsonString() }}\n```\n\nFinal Output Format: Ensure the entire response is well-structured, clean Markdown, ready to be used as a content brief.",
"options": {},
"promptType": "define"
},
"typeVersion": 1.8
},
{
"id": "613e1d25-3e9d-4a7f-8657-392854eb00de",
"name": "Obtener Entrada desde NocoDB",
"type": "n8n-nodes-base.webhook",
"position": [
-680,
340
],
"webhookId": "ac7e989d-6e32-4850-83c4-f10421467fb8",
"parameters": {
"path": "ac7e989d-6e32-4850-83c4-f10421467fb8",
"options": {},
"httpMethod": "POST"
},
"typeVersion": 2
},
{
"id": "88076d36-fe04-4a7a-a176-9ba93388b089",
"name": "Dividir las URLs de Competencia",
"type": "n8n-nodes-base.splitOut",
"position": [
580,
660
],
"parameters": {
"options": {},
"fieldToSplitOut": "competitorUrls"
},
"typeVersion": 1
},
{
"id": "88d8ad2f-4b66-48e3-aaf7-d6f8210f264b",
"name": "Establecer campos relevantes",
"type": "n8n-nodes-base.set",
"position": [
-500,
340
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "e729ab88-95f8-44c0-948c-d2476262fd17",
"name": "primary_topic",
"type": "string",
"value": "={{ $json.body.data.rows[0]['Primary Topic'] }}"
},
{
"id": "1c6fbf22-fb3f-4577-b6cc-4d0672ff2046",
"name": "competitor_urls",
"type": "string",
"value": "={{ $json.body.data.rows[0]['Competitor URLs'] }}"
},
{
"id": "ea8518c8-8f89-4aa5-9546-44be77deeebb",
"name": "target_audience",
"type": "string",
"value": "={{ $json.body.data.rows[0]['Target Audience'] }}"
},
{
"id": "4b27d628-6cc1-4161-bb49-d39a4b1d320e",
"name": "content_type",
"type": "string",
"value": "={{ $json.body.data.rows[0]['Content Type'] }}"
},
{
"id": "bb3fefe7-7eea-4a6d-b2de-307b791ff1b6",
"name": "id",
"type": "string",
"value": "={{ $json.body.data.rows[0].Id }}"
},
{
"id": "09e64ce6-39de-4550-9078-fe4f233edd9a",
"name": "status",
"type": "string",
"value": "={{ $json.body.data.rows[0].Status }}"
},
{
"id": "c10736b0-dece-40a7-9fb0-86b23b44e517",
"name": "location",
"type": "string",
"value": "={{ $json.body.data.rows[0].Location }}"
},
{
"id": "6508a1e9-963d-4a79-bd35-f537c892e8d4",
"name": "language",
"type": "string",
"value": "={{ $json.body.data.rows[0].Language }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "1f083fb0-8b55-43f0-85de-58a81f30a9f2",
"name": "OpenAI Chat Model1",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1100,
860
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "o1",
"cachedResultName": "o1"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "AZynAxNG099jyj7B",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "ffcc38ac-0f0a-4fc7-8e65-86950ea6a01d",
"name": "Formatear Json y agregar URLs de Competencia",
"type": "n8n-nodes-base.code",
"position": [
300,
660
],
"parameters": {
"jsCode": "const inputJson = $input.first().json;\nconst rawUrls = inputJson.competitor_urls;\n\nconst competitorUrls = rawUrls\n .split(\",\")\n .map(url => url.trim())\n .filter(url => url.length > 0);\n\nconst outputJson = {\n ...inputJson,\n competitorUrls: competitorUrls\n};\n\nreturn [{ json: outputJson }];\n"
},
"typeVersion": 2
},
{
"id": "cf522a25-6e62-4a34-b5dd-6684ea67e938",
"name": "Agregar SV y CPC",
"type": "n8n-nodes-base.aggregate",
"position": [
880,
60
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData"
},
"typeVersion": 1
},
{
"id": "781614a6-7afd-4465-86cb-05ef781b70fe",
"name": "Agregar KWD",
"type": "n8n-nodes-base.aggregate",
"position": [
880,
260
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData"
},
"typeVersion": 1
},
{
"id": "15ab5e60-1f8d-4fd5-bfd8-983a8e0861bb",
"name": "Combinar SV, CPC y KWD",
"type": "n8n-nodes-base.merge",
"position": [
1174,
160
],
"parameters": {
"mode": "combine",
"options": {},
"combineBy": "combineByPosition"
},
"typeVersion": 3.1
},
{
"id": "19b056e8-8fb3-436a-b8be-356eeedbb57e",
"name": "Combinar Expansión de Temas, SV, CPC y KWD",
"type": "n8n-nodes-base.merge",
"position": [
1472,
235
],
"parameters": {
"mode": "combine",
"options": {},
"combineBy": "combineByPosition"
},
"typeVersion": 3.1
},
{
"id": "460a5cf3-691e-44c8-a1d3-8dcd43728851",
"name": "Agregar Análisis de Competencia",
"type": "n8n-nodes-base.aggregate",
"position": [
1472,
660
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData"
},
"typeVersion": 1
},
{
"id": "b28fe5bb-2ca1-4c02-b45f-033af494d706",
"name": "Combinar Todo",
"type": "n8n-nodes-base.merge",
"position": [
1720,
440
],
"parameters": {
"mode": "combine",
"options": {
"includeUnpaired": false
},
"combineBy": "combineByPosition",
"numberInputs": 3
},
"typeVersion": 3.1
},
{
"id": "a4851979-f231-458b-be3f-13eb3c14b0ee",
"name": "Redactar Brief de Contenido",
"type": "n8n-nodes-base.nocoDb",
"position": [
2320,
440
],
"parameters": {
"table": "mfsjucjn304v1hc",
"fieldsUi": {
"fieldValues": [
{
"fieldName": "primary_topic_used",
"fieldValue": "={{ $('Merge Everything').item.json.primary_topic }}"
},
{
"fieldName": "report_content",
"fieldValue": "={{ $json.output }}"
}
]
},
"operation": "create",
"projectId": "pl6znsxtne8x3yh",
"authentication": "nocoDbApiToken"
},
"credentials": {
"nocoDbApiToken": {
"id": "Nqxw0TptKnROWv9i",
"name": "NocoDB (hosted) Token account"
}
},
"typeVersion": 3
},
{
"id": "e13ecdf4-0696-4bd7-bbf5-49cb508072c6",
"name": "Actualizar Estado - Completado",
"type": "n8n-nodes-base.nocoDb",
"position": [
2320,
600
],
"parameters": {
"table": "mp3qmbuye3pyihc",
"fieldsUi": {
"fieldValues": [
{
"fieldName": "Id",
"fieldValue": "={{ $('Merge Everything').item.json.id }}"
},
{
"fieldName": "=Status",
"fieldValue": "Done"
}
]
},
"operation": "update",
"projectId": "pl6znsxtne8x3yh",
"authentication": "nocoDbApiToken"
},
"credentials": {
"nocoDbApiToken": {
"id": "Nqxw0TptKnROWv9i",
"name": "NocoDB (hosted) Token account"
}
},
"typeVersion": 3
},
{
"id": "c23e1c12-41d3-4c91-8175-f035024c6339",
"name": "Enviar Notificación",
"type": "n8n-nodes-base.slack",
"position": [
2320,
800
],
"webhookId": "d4615307-81b9-45a3-9d03-4fe5875811c1",
"parameters": {
"text": "=>> DONE << \n\nSEO Keyword Research \nPrimary Topic: {{ $('Merge Everything').item.json.primary_topic }}\nTarget Audience: {{ $('Merge Everything').item.json.target_audience }}\nContent Type: {{ $('Merge Everything').item.json.content_type }}\nLocation: {{ $('Merge Everything').item.json.location }}\nLanguage: {{ $('Merge Everything').item.json.language }}\nCompetitor URLs: {{ $('Merge Everything').item.json.competitor_urls }}",
"select": "channel",
"channelId": {
"__rl": true,
"mode": "list",
"value": "C08Q7EQ8JNS",
"cachedResultName": "seo-keyword-research"
},
"otherOptions": {
"mrkdwn": false,
"includeLinkToWorkflow": false
}
},
"credentials": {
"slackApi": {
"id": "WSpsCFfmEwBZkHv1",
"name": "Slack account"
}
},
"typeVersion": 2.3
},
{
"id": "acfee96e-7d37-4a36-b652-3b0798688538",
"name": "Notificación de Inicio",
"type": "n8n-nodes-base.slack",
"position": [
-340,
20
],
"webhookId": "d4615307-81b9-45a3-9d03-4fe5875811c1",
"parameters": {
"text": "=>> START << \n\nSEO Keyword Research \nPrimary Topic: {{ $json.primary_topic }}\nTarget Audience: {{ $json.target_audience }}\nContent Type: {{ $json.content_type }}\nLocation: {{ $json.location }}\nLanguage: {{ $json.language }}\nCompetitor URLs: {{ $json.competitor_urls }}",
"select": "channel",
"channelId": {
"__rl": true,
"mode": "list",
"value": "C08Q7EQ8JNS",
"cachedResultName": "seo-keyword-research"
},
"otherOptions": {
"mrkdwn": false,
"includeLinkToWorkflow": false
}
},
"credentials": {
"slackApi": {
"id": "WSpsCFfmEwBZkHv1",
"name": "Slack account"
}
},
"typeVersion": 2.3
},
{
"id": "5af5855d-b858-4b9f-91bc-1cbb14c08258",
"name": "Actualizar Estado - Iniciado",
"type": "n8n-nodes-base.nocoDb",
"position": [
-140,
40
],
"parameters": {
"table": "mp3qmbuye3pyihc",
"fieldsUi": {
"fieldValues": [
{
"fieldName": "Id",
"fieldValue": "={{ $json.id }}"
},
{
"fieldName": "=Status",
"fieldValue": "Started"
}
]
},
"operation": "update",
"projectId": "pl6znsxtne8x3yh",
"authentication": "nocoDbApiToken"
},
"credentials": {
"nocoDbApiToken": {
"id": "Nqxw0TptKnROWv9i",
"name": "NocoDB (hosted) Token account"
}
},
"typeVersion": 3
},
{
"id": "a9db9a15-acc1-411c-b596-810a2ce6b8f6",
"name": "Nota Adhesiva",
"type": "n8n-nodes-base.stickyNote",
"position": [
-440,
-140
],
"parameters": {
"color": 7,
"width": 480,
"height": 360,
"content": "## Notification and Update Status\n"
},
"typeVersion": 1
},
{
"id": "bd0e0d35-dce3-47c4-bb85-de02ded10691",
"name": "Nota Adhesiva1",
"type": "n8n-nodes-base.stickyNote",
"position": [
60,
40
],
"parameters": {
"width": 280,
"height": 540,
"content": "## Topic Expansion"
},
"typeVersion": 1
},
{
"id": "9bb138db-cf51-4614-aeb4-abe7b298aab7",
"name": "Nota Adhesiva2",
"type": "n8n-nodes-base.stickyNote",
"position": [
400,
-80
],
"parameters": {
"color": 5,
"width": 1220,
"height": 540,
"content": "## Search Volume, Cost Per Click, Keyword Difficulty"
},
"typeVersion": 1
},
{
"id": "757c15fc-5b5f-44d6-ae06-43dac9c32b2c",
"name": "Nota Adhesiva3",
"type": "n8n-nodes-base.stickyNote",
"position": [
260,
600
],
"parameters": {
"color": 4,
"width": 1360,
"height": 460,
"content": "## Competitor Research"
},
"typeVersion": 1
},
{
"id": "5459b4ee-f8dd-426b-b0f2-52b8ad6e1222",
"name": "Nota Adhesiva4",
"type": "n8n-nodes-base.stickyNote",
"position": [
1700,
260
],
"parameters": {
"color": 6,
"width": 500,
"height": 540,
"content": "## Merge and write Final Keyword Strategy"
},
"typeVersion": 1
},
{
"id": "398ff4dd-d143-4944-96f3-3284cb391d84",
"name": "Nota Adhesiva5",
"type": "n8n-nodes-base.stickyNote",
"position": [
2260,
260
],
"parameters": {
"color": 7,
"height": 720,
"content": "## Save, Update Status and Notify"
},
"typeVersion": 1
},
{
"id": "7d0ee538-62c7-4bdc-bd4a-be5f600c78b4",
"name": "Nota Adhesiva6",
"type": "n8n-nodes-base.stickyNote",
"position": [
-740,
240
],
"parameters": {
"width": 400,
"height": 320,
"content": "## Input"
},
"typeVersion": 1
},
{
"id": "42f81576-ac7c-4ab2-a93b-3c95410bd801",
"name": "Nota Adhesiva7",
"type": "n8n-nodes-base.stickyNote",
"position": [
460,
-280
],
"parameters": {
"color": 3,
"width": 820,
"height": 80,
"content": "# AI-Powered SEO Keyword Research Automation"
},
"typeVersion": 1
}
],
"active": true,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "9abcff0c-1aff-4594-8796-8828963a3f75",
"connections": {
"781614a6-7afd-4465-86cb-05ef781b70fe": {
"main": [
[
{
"node": "15ab5e60-1f8d-4fd5-bfd8-983a8e0861bb",
"type": "main",
"index": 1
}
]
]
},
"38cd2c66-d4b7-47a9-a3eb-f58eb32f55ab": {
"main": [
[
{
"node": "2985d85c-4373-4f18-9c27-188f19c920a6",
"type": "main",
"index": 0
},
{
"node": "19b056e8-8fb3-436a-b8be-356eeedbb57e",
"type": "main",
"index": 1
}
]
]
},
"b28fe5bb-2ca1-4c02-b45f-033af494d706": {
"main": [
[
{
"node": "1e1f4a81-31b9-450d-85ba-65dbe2b6e8c2",
"type": "main",
"index": 0
}
]
]
},
"65aacfa5-4891-49f9-a614-2866c96142ee": {
"ai_languageModel": [
[
{
"node": "38cd2c66-d4b7-47a9-a3eb-f58eb32f55ab",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"cf522a25-6e62-4a34-b5dd-6684ea67e938": {
"main": [
[
{
"node": "15ab5e60-1f8d-4fd5-bfd8-983a8e0861bb",
"type": "main",
"index": 0
}
]
]
},
"564866ac-c287-48a3-816c-78207dfce133": {
"main": [
[
{
"node": "781614a6-7afd-4465-86cb-05ef781b70fe",
"type": "main",
"index": 0
}
]
]
},
"1f083fb0-8b55-43f0-85de-58a81f30a9f2": {
"ai_languageModel": [
[
{
"node": "14811f51-5992-4e35-af8d-f05f5b488bc1",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"49819332-744d-45a5-b0ed-b74a1a57aad8": {
"ai_languageModel": [
[
{
"node": "1e1f4a81-31b9-450d-85ba-65dbe2b6e8c2",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"14811f51-5992-4e35-af8d-f05f5b488bc1": {
"main": [
[
{
"node": "460a5cf3-691e-44c8-a1d3-8dcd43728851",
"type": "main",
"index": 0
}
]
]
},
"15ab5e60-1f8d-4fd5-bfd8-983a8e0861bb": {
"main": [
[
{
"node": "19b056e8-8fb3-436a-b8be-356eeedbb57e",
"type": "main",
"index": 0
}
]
]
},
"d39e392c-c547-4edd-8fe9-014c26152915": {
"main": [
[
{
"node": "cf522a25-6e62-4a34-b5dd-6684ea67e938",
"type": "main",
"index": 0
}
]
]
},
"88d8ad2f-4b66-48e3-aaf7-d6f8210f264b": {
"main": [
[
{
"node": "38cd2c66-d4b7-47a9-a3eb-f58eb32f55ab",
"type": "main",
"index": 0
},
{
"node": "ffcc38ac-0f0a-4fc7-8e65-86950ea6a01d",
"type": "main",
"index": 0
},
{
"node": "b28fe5bb-2ca1-4c02-b45f-033af494d706",
"type": "main",
"index": 2
},
{
"node": "5af5855d-b858-4b9f-91bc-1cbb14c08258",
"type": "main",
"index": 0
},
{
"node": "acfee96e-7d37-4a36-b652-3b0798688538",
"type": "main",
"index": 0
}
]
]
},
"a4851979-f231-458b-be3f-13eb3c14b0ee": {
"main": [
[]
]
},
"613e1d25-3e9d-4a7f-8657-392854eb00de": {
"main": [
[
{
"node": "88d8ad2f-4b66-48e3-aaf7-d6f8210f264b",
"type": "main",
"index": 0
}
]
]
},
"1e1f4a81-31b9-450d-85ba-65dbe2b6e8c2": {
"main": [
[
{
"node": "a4851979-f231-458b-be3f-13eb3c14b0ee",
"type": "main",
"index": 0
},
{
"node": "e13ecdf4-0696-4bd7-bbf5-49cb508072c6",
"type": "main",
"index": 0
},
{
"node": "c23e1c12-41d3-4c91-8175-f035024c6339",
"type": "main",
"index": 0
}
]
]
},
"2985d85c-4373-4f18-9c27-188f19c920a6": {
"main": [
[
{
"node": "d39e392c-c547-4edd-8fe9-014c26152915",
"type": "main",
"index": 0
},
{
"node": "564866ac-c287-48a3-816c-78207dfce133",
"type": "main",
"index": 0
}
]
]
},
"07576442-14b1-402a-a084-50fd775d6523": {
"main": [
[
{
"node": "14811f51-5992-4e35-af8d-f05f5b488bc1",
"type": "main",
"index": 0
}
]
]
},
"5a0445ad-20c9-4e62-8e04-62451d3e8f7e": {
"ai_outputParser": [
[
{
"node": "38cd2c66-d4b7-47a9-a3eb-f58eb32f55ab",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"88076d36-fe04-4a7a-a176-9ba93388b089": {
"main": [
[
{
"node": "07576442-14b1-402a-a084-50fd775d6523",
"type": "main",
"index": 0
}
]
]
},
"460a5cf3-691e-44c8-a1d3-8dcd43728851": {
"main": [
[
{
"node": "b28fe5bb-2ca1-4c02-b45f-033af494d706",
"type": "main",
"index": 1
}
]
]
},
"ffcc38ac-0f0a-4fc7-8e65-86950ea6a01d": {
"main": [
[
{
"node": "88076d36-fe04-4a7a-a176-9ba93388b089",
"type": "main",
"index": 0
}
]
]
},
"19b056e8-8fb3-436a-b8be-356eeedbb57e": {
"main": [
[
{
"node": "b28fe5bb-2ca1-4c02-b45f-033af494d706",
"type": "main",
"index": 0
}
]
]
}
}
}¿Cómo usar este flujo de trabajo?
Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.
¿En qué escenarios es adecuado este flujo de trabajo?
Avanzado - Inteligencia Artificial, Marketing
¿Es de pago?
Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.
Flujos de trabajo relacionados recomendados
phil
@philroxCompartir este flujo de trabajo