Sistema de preguntas y respuestas de documentos inteligente basado en Webhook, Pinecone + OpenAI + n8n

Avanzado

Este es unInternal Wiki, AI RAGflujo de automatización del dominio deautomatización que contiene 30 nodos.Utiliza principalmente nodos como Webhook, GoogleDrive, ManualTrigger, Agent, RespondToWebhook. Sistema de preguntas y respuestas de documentos basado en OpenAI GPT, base de datos vectorial Pinecone e integración con Google Drive

Requisitos previos
  • Punto final de HTTP Webhook (n8n generará automáticamente)
  • Credenciales de API de Google Drive
  • Clave de API de OpenAI
  • Clave de API de Pinecone
Vista previa del flujo de trabajo
Visualización de las conexiones entre nodos, con soporte para zoom y panorámica
Exportar flujo de trabajo
Copie la siguiente configuración JSON en n8n para importar y usar este flujo de trabajo
{
  "id": "UVMlpwIIsDBBFclU",
  "meta": {
    "instanceId": "92e36925b2d06addd7a010605535ce53ac105737436355f7e52e2980c726ed3d",
    "templateCredsSetupCompleted": true
  },
  "name": "AI-Powered Document QA System using Webhook, Pinecone + OpenAI + n8n",
  "tags": [
    {
      "id": "Bv4R1pgV3YCnUGME",
      "name": "webhook",
      "createdAt": "2025-07-04T05:26:19.837Z",
      "updatedAt": "2025-07-04T05:26:19.837Z"
    },
    {
      "id": "lTpSGA7vnSvUGQs6",
      "name": "lovable",
      "createdAt": "2025-07-04T05:26:29.453Z",
      "updatedAt": "2025-07-04T05:26:29.453Z"
    },
    {
      "id": "oKGIn6U0wpeHShTN",
      "name": "working flow",
      "createdAt": "2025-06-02T06:27:44.762Z",
      "updatedAt": "2025-06-02T06:27:44.762Z"
    }
  ],
  "nodes": [
    {
      "id": "784badb8-0cf6-434d-9d5d-1670757b548b",
      "name": "Al hacer clic en 'Ejecutar flujo de trabajo'",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -300,
        -40
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "26b93e8c-0a72-4491-90fe-55b5f5da02a0",
      "name": "Google Drive",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        -80,
        -40
      ],
      "parameters": {
        "filter": {
          "folderId": {
            "__rl": true,
            "mode": "list",
            "value": "1NgITWoqBgLAVof9bxF0jIrVToQ9c919u",
            "cachedResultUrl": "https://drive.google.com/drive/folders/1NgITWoqBgLAVof9bxF0jIrVToQ9c919u",
            "cachedResultName": "contract document"
          }
        },
        "options": {},
        "resource": "fileFolder"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "RFbg76pQ49AUClT1",
          "name": "name"
        }
      },
      "typeVersion": 3
    },
    {
      "id": "21174f84-5f7b-45bc-944b-0f0a7c2ffd49",
      "name": "Google Drive1",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        140,
        -40
      ],
      "parameters": {
        "fileId": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $json.id }}"
        },
        "options": {},
        "operation": "download"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "RFbg76pQ49AUClT1",
          "name": "name"
        }
      },
      "typeVersion": 3
    },
    {
      "id": "d84e6051-cc04-4f51-b9c3-0e69e2193571",
      "name": "Pinecone Almacén de vectores",
      "type": "@n8n/n8n-nodes-langchain.vectorStorePinecone",
      "position": [
        360,
        -40
      ],
      "parameters": {
        "mode": "insert",
        "options": {},
        "pineconeIndex": {
          "__rl": true,
          "mode": "list",
          "value": "package1536",
          "cachedResultName": "package1536"
        }
      },
      "credentials": {
        "pineconeApi": {
          "id": "id",
          "name": "PineconeApi account 2"
        }
      },
      "typeVersion": 1.3
    },
    {
      "id": "3185a781-28af-4ee0-be7b-2183b80ce0e3",
      "name": "Incrustaciones OpenAI",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        300,
        160
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "id",
          "name": "OpenAi account 5"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "8eccc3bb-654f-4a92-8074-9d2418afae12",
      "name": "Default Data Loader",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        500,
        180
      ],
      "parameters": {
        "options": {},
        "dataType": "binary",
        "textSplittingMode": "custom"
      },
      "typeVersion": 1.1
    },
    {
      "id": "9a6a4542-81f0-4fa6-b0fa-6fbfcf5fb3d3",
      "name": "Recursive Character Text Splitter",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        600,
        400
      ],
      "parameters": {
        "options": {},
        "chunkOverlap": 100
      },
      "typeVersion": 1
    },
    {
      "id": "60485603-13aa-46c8-9824-011b75d368bd",
      "name": "Nota adhesiva",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -420,
        -180
      ],
      "parameters": {
        "width": 1300,
        "height": 980,
        "content": "## Document Loading \n1. Connect to Google Drive folder to access Contract Agreement Documents\n2. Download and Vectorize the Data using Vector Embedding \n3. Store in Pinecone Database"
      },
      "typeVersion": 1
    },
    {
      "id": "349466bc-c0c7-4e4e-9e9c-78554a3123ae",
      "name": "Nota adhesiva1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -420,
        940
      ],
      "parameters": {
        "width": 1300,
        "height": 720,
        "content": "## Query Document via Chat (for testing)"
      },
      "typeVersion": 1
    },
    {
      "id": "id",
      "name": "Al recibir mensaje de chat",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        -100,
        980
      ],
      "webhookId": "id",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "4240e62e-0b44-4dbd-9cff-87a404a496bd",
      "name": "Agente IA",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        120,
        980
      ],
      "parameters": {
        "options": {
          "systemMessage": "*Role*\nYou are a highly experienced contracting, commercial and legal adviser who thoroughly understands the contract related to shipping, clearing and forwarding agreements and advise and reply to chat queries looking into the pinecone vector database and respond accordingly. \n\n**Instructions**\nyou will receive chat query to which you have to reply back in chat\nyou will only look for information in the pinecone vector databse\nyou will not create your own reply if you don't get the answer from the database\n\nNote:\nbe polite and professional in your response\ncan use emojis where it is appropriate\n"
        }
      },
      "typeVersion": 2
    },
    {
      "id": "34d9e834-3aba-4c80-8c4d-4206fcdbfac3",
      "name": "Modelo de chat OpenAI",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        80,
        1200
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4.1-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "id",
          "name": "OpenAi account 5"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "784924f6-d197-4666-9a05-e36020021ae2",
      "name": "Simple Memoria",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        200,
        1200
      ],
      "parameters": {},
      "typeVersion": 1.3
    },
    {
      "id": "00b70c8d-5940-4eef-84c4-b87d69df3ab9",
      "name": "Answer questions with a vector store",
      "type": "@n8n/n8n-nodes-langchain.toolVectorStore",
      "position": [
        380,
        1200
      ],
      "parameters": {
        "description": "When ever there is a query from chat, use this pinecone vector database to analyse and construct the response. "
      },
      "typeVersion": 1.1
    },
    {
      "id": "dfefbee7-5125-42da-b696-f343dc89573c",
      "name": "Pinecone Almacén de vectores1",
      "type": "@n8n/n8n-nodes-langchain.vectorStorePinecone",
      "position": [
        180,
        1360
      ],
      "parameters": {
        "options": {},
        "pineconeIndex": {
          "__rl": true,
          "mode": "list",
          "value": "package1536",
          "cachedResultName": "package1536"
        }
      },
      "credentials": {
        "pineconeApi": {
          "id": "id",
          "name": "PineconeApi account 2"
        }
      },
      "typeVersion": 1.3
    },
    {
      "id": "8a0e2476-661e-4702-8563-ec0b12033884",
      "name": "Incrustaciones OpenAI1",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        200,
        1500
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "SCKN5KUziIpM8NB7",
          "name": "OpenAi account 5"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "31a4456c-4a35-4beb-9c4b-de49e460e492",
      "name": "Modelo de chat OpenAI1",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        520,
        1420
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4.1-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "SCKN5KUziIpM8NB7",
          "name": "OpenAi account 5"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "7aa47a91-19f9-4a0e-b1b2-5867cf4982ef",
      "name": "Nota adhesiva2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1660,
        -160
      ],
      "parameters": {
        "width": 1200,
        "height": 980,
        "content": "## Query document from a user interface connectied via Webhook\n"
      },
      "typeVersion": 1
    },
    {
      "id": "c9da6a17-a0aa-4d3c-844a-1c3785a956eb",
      "name": "Disparador Webhook",
      "type": "n8n-nodes-base.webhook",
      "position": [
        1900,
        0
      ],
      "webhookId": "12b44ee5-c43e-430c-a1d4-4fc5ff5e45c4",
      "parameters": {
        "path": "12b44ee5-c43e-430c-a1d4-4fc5ff5e45c4",
        "options": {},
        "httpMethod": "POST",
        "responseMode": "responseNode"
      },
      "typeVersion": 2
    },
    {
      "id": "b1e8830f-8cfe-40ef-b611-76e70cd9184b",
      "name": "Agente IA1",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        2120,
        0
      ],
      "parameters": {
        "text": "=the query: {{ $json.body.query }}",
        "options": {
          "systemMessage": "*Role*\nYou are a highly experienced contracting, commercial and legal adviser who thoroughly understands the contract related to shipping, clearing and forwarding agreements and advise and reply to chat queries looking into the pinecone vector database and respond accordingly. \n\n**Instructions**\nyou will receive chat query to which you have to reply back in chat\nyou will only look for information in the pinecone vector databse\nyou will not create your own reply if you don't get the answer from the database\n\nNote:\nbe polite and professional in your response\ncan use emojis where it is appropriate\n"
        },
        "promptType": "define"
      },
      "typeVersion": 2
    },
    {
      "id": "87db20d4-7a7c-48a6-a29a-2fd089f93a43",
      "name": "Modelo de chat OpenAI2",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        2020,
        220
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4.1-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "id",
          "name": "OpenAi account 5"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "2454b5ff-e53e-41c5-9844-f171d63ee2d4",
      "name": "Simple Memoria1",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "disabled": true,
      "position": [
        2180,
        220
      ],
      "parameters": {},
      "typeVersion": 1.3
    },
    {
      "id": "e33b7eff-0166-43b2-ab7e-5f53063164a9",
      "name": "Answer questions with a vector store1",
      "type": "@n8n/n8n-nodes-langchain.toolVectorStore",
      "position": [
        2380,
        220
      ],
      "parameters": {
        "description": "When ever there is a query from chat, use this pinecone vector database to analyse and construct the response. "
      },
      "typeVersion": 1.1
    },
    {
      "id": "e223bcf1-7085-433a-a51d-708b0c36a2e4",
      "name": "Pinecone Almacén de vectores2",
      "type": "@n8n/n8n-nodes-langchain.vectorStorePinecone",
      "position": [
        2180,
        380
      ],
      "parameters": {
        "options": {},
        "pineconeIndex": {
          "__rl": true,
          "mode": "list",
          "value": "package1536",
          "cachedResultName": "package1536"
        }
      },
      "credentials": {
        "pineconeApi": {
          "id": "HqCFDvnsq0D6wXpJ",
          "name": "PineconeApi account 2"
        }
      },
      "typeVersion": 1.3
    },
    {
      "id": "9e3f06a1-900b-427e-8775-dad8ddc1de80",
      "name": "Incrustaciones OpenAI2",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        2200,
        520
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "id",
          "name": "OpenAi account 5"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "df06efec-1f75-4309-923b-044e1c1991f3",
      "name": "Modelo de chat OpenAI3",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        2520,
        440
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4.1-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "id",
          "name": "OpenAi account 5"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "01b59805-abdd-49ff-a553-0dddf3ed1450",
      "name": "Respond to Disparador Webhook",
      "type": "n8n-nodes-base.respondToWebhook",
      "position": [
        2480,
        0
      ],
      "parameters": {
        "options": {
          "responseKey": "={{ $json.output }}"
        }
      },
      "typeVersion": 1.4
    },
    {
      "id": "05fd0853-0ebd-4a99-9345-982c9e664e27",
      "name": "Nota adhesiva3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1000,
        -180
      ],
      "parameters": {
        "color": 4,
        "width": 560,
        "height": 980,
        "content": "This project demonstrates how to build a Retrieval-Augmented Generation (RAG) system using n8n, which:\n🧾 Downloads any pdf file format documents from Google Drive\n📚 Converts them into vector embeddings using OpenAI\n🔍 Stores and searches them in Pinecone Vector DB\n💬 Allows natural language querying of contracts using AI Agents\n\n## Document Loading & RAG Setup\nThis flow automates:\nReading documents from a Google Drive folder\nVectorizing using text-embedding-3-small\nUploading vectors into Pinecone for later semantic search\n\n### 🧱 Workflow Structure\nA [Manual Trigger] --> B[Google Drive Search]\nB --> C[Google Drive Download]\nC --> D[Pinecone Vector Store]\nD --> E[Default Data Loader]\nE --> F[Recursive Character Text Splitter]\nE --> G[OpenAI Embedding]\n\n### 🪜 Steps\nManual Trigger: Kickstarts the workflow on demand for loading new documents.\nGoogle Drive Search & Download\nNode: Google Drive (Search: file/folder), Credentials required to access google drive folders and files\nDownloads PDF documents from the google drive\n\n#### Recursive Text Splitter to Break long documents into overlapping chunks\nSettings:\nChunk Size: 1000\nChunk Overlap: 100\n\n#### OpenAI Embedding\nModel: text-embedding-3-small\nUsed for creating document vectors\n\n#### Pinecone Vector Store\nIndex: package1536\nBatch Size: 200\nSettings:\nType: Dense\nRegion: us-east-1\nMode: Insert Documents\n\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "7f1cc5b2-104e-4571-a838-29c71c79bd08",
      "name": "Nota adhesiva4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1000,
        940
      ],
      "parameters": {
        "color": 4,
        "width": 560,
        "height": 720,
        "content": "## Quyerying the Documetn via Chat \nThis flow enables chat-style querying of stored documents using OpenAI-powered agents with vector memory.\n\n### 🧱 Workflow Diagram\n  A[Webhook (chat message)] --> B[AI Agent]\n  B --> C[OpenAI Chat Model]\n  B --> D[Simple Memory]\n  B --> E[Answer with Vector Store]\n  E --> F[Pinecone Vector Store]\n  F --> G[Embeddings OpenAI]\n### 🪜 Components\nChat Trigger\nAI Agent Node\n\nHandles query flow using:\nChat Model: OpenAI GPT\nMemory: Simple Memory\nTool: Question Answer with Vector Store\nPinecone Vector Store\nConnected via same embedding index as Flow 1 Embeddings\nEnsures document chunks are retrievable using vector similarity\nResponse Node\nReturns final AI response to user via chat response\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "e11b8fbd-c24b-469f-a196-1e507a6d3e75",
      "name": "Nota adhesiva5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1080,
        -160
      ],
      "parameters": {
        "color": 4,
        "width": 560,
        "height": 980,
        "content": "## 🌐 Flow 3: UI-Based Query with webhook connecting to Lovable\nThis flow uses a web UI built using Lovable to query contracts directly from a form interface.\n\n### 📥 Webhook Setup for Lovable\nWebhook Node\nMethod: POST\nURL: your webhook url\nResponse: Using 'Respond to Webhook' Node\n\n### 🧱 Workflow Logic\n  A[Webhook (Lovable Form)] --> B[AI Agent]\n  B --> C[OpenAI Chat Model]\n  B --> D[Simple Memory]\n  B --> E[Answer with Vector Store]\n  E --> F[Pinecone Vector Store]\n  F --> G[Embeddings OpenAI]\n  B --> H[Respond to Webhook]\n\n### 💡 Lovable UI\nUsers can submit:\nFull Name\nEmail\nDepartment\nFreeform Query\n\nData is sent via webhook to n8n and responded with the answer from contract content.\n\n### 🔍 Use Cases\nContract Querying for Legal/HR teams\nProcurement & Vendor Agreement QA\nCustomer Support Automation (based on terms)\nRAG Systems for private document knowledge\n\n⚙️ Tools & Tech Stack\nComponent\tTool Used\nAI Embedding\tOpenAI text-embedding-3-small\nVector DB\tPinecone\nChunking\tRecursive Text Splitter\nAI Agent\tOpenAI GPT Chat\nAutomation\tn8n\nUI Integration\tLovable (form-based)\n\n\n\n"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "460c7740-a2d1-41f7-92d5-fc9113152663",
  "connections": {
    "Webhook": {
      "main": [
        [
          {
            "node": "AI Agent1",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "AI Agent1": {
      "main": [
        [
          {
            "node": "Respond to Webhook",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "26b93e8c-0a72-4491-90fe-55b5f5da02a0": {
      "main": [
        [
          {
            "node": "21174f84-5f7b-45bc-944b-0f0a7c2ffd49",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "21174f84-5f7b-45bc-944b-0f0a7c2ffd49": {
      "main": [
        [
          {
            "node": "Pinecone Vector Store",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Simple Memory": {
      "ai_memory": [
        [
          {
            "node": "AI Agent",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "Simple Memory1": {
      "ai_memory": [
        [
          {
            "node": "AI Agent1",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings OpenAI": {
      "ai_embedding": [
        [
          {
            "node": "Pinecone Vector Store",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "AI Agent",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings OpenAI1": {
      "ai_embedding": [
        [
          {
            "node": "Pinecone Vector Store1",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings OpenAI2": {
      "ai_embedding": [
        [
          {
            "node": "Pinecone Vector Store2",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model1": {
      "ai_languageModel": [
        [
          {
            "node": "00b70c8d-5940-4eef-84c4-b87d69df3ab9",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model2": {
      "ai_languageModel": [
        [
          {
            "node": "AI Agent1",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model3": {
      "ai_languageModel": [
        [
          {
            "node": "e33b7eff-0166-43b2-ab7e-5f53063164a9",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "8eccc3bb-654f-4a92-8074-9d2418afae12": {
      "ai_document": [
        [
          {
            "node": "Pinecone Vector Store",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "Pinecone Vector Store1": {
      "ai_vectorStore": [
        [
          {
            "node": "00b70c8d-5940-4eef-84c4-b87d69df3ab9",
            "type": "ai_vectorStore",
            "index": 0
          }
        ]
      ]
    },
    "Pinecone Vector Store2": {
      "ai_vectorStore": [
        [
          {
            "node": "e33b7eff-0166-43b2-ab7e-5f53063164a9",
            "type": "ai_vectorStore",
            "index": 0
          }
        ]
      ]
    },
    "id": {
      "main": [
        [
          {
            "node": "AI Agent",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "9a6a4542-81f0-4fa6-b0fa-6fbfcf5fb3d3": {
      "ai_textSplitter": [
        [
          {
            "node": "8eccc3bb-654f-4a92-8074-9d2418afae12",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "00b70c8d-5940-4eef-84c4-b87d69df3ab9": {
      "ai_tool": [
        [
          {
            "node": "AI Agent",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "784badb8-0cf6-434d-9d5d-1670757b548b": {
      "main": [
        [
          {
            "node": "26b93e8c-0a72-4491-90fe-55b5f5da02a0",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "e33b7eff-0166-43b2-ab7e-5f53063164a9": {
      "ai_tool": [
        [
          {
            "node": "AI Agent1",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    }
  }
}
Preguntas frecuentes

¿Cómo usar este flujo de trabajo?

Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.

¿En qué escenarios es adecuado este flujo de trabajo?

Avanzado - Wiki interno, RAG de IA

¿Es de pago?

Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.

Información del flujo de trabajo
Nivel de dificultad
Avanzado
Número de nodos30
Categoría2
Tipos de nodos14
Descripción de la dificultad

Adecuado para usuarios avanzados, flujos de trabajo complejos con 16+ nodos

Autor
Mohan Gopal

Mohan Gopal

@mohan

B2B and B2C Travel App Consultant. Building AI Agent for Travel Solution.

Enlaces externos
Ver en n8n.io

Compartir este flujo de trabajo

Categorías

Categorías: 34