Mi flujo de trabajo 2

Avanzado

Este es unMarket Research, AI Summarizationflujo de automatización del dominio deautomatización que contiene 16 nodos.Utiliza principalmente nodos como Code, Merge, Webhook, GoogleSheets, SplitInBatches. Automatización de la investigación profunda con ScrapeGraphAI, GPT-4 y Google Sheets

Requisitos previos
  • Punto final de HTTP Webhook (n8n generará automáticamente)
  • Credenciales de API de Google Sheets
Vista previa del flujo de trabajo
Visualización de las conexiones entre nodos, con soporte para zoom y panorámica
Exportar flujo de trabajo
Copie la siguiente configuración JSON en n8n para importar y usar este flujo de trabajo
{
  "id": "VhEwspDqzu7ssFVE",
  "meta": {
    "instanceId": "f4b0efaa33080e7774e0d9285c40c7abcd2c6f7cf1a8b901fa7106170dd4cda3",
    "templateCredsSetupCompleted": true
  },
  "name": "My workflow 2",
  "tags": [],
  "nodes": [
    {
      "id": "48a84828-73de-4f4b-beb1-60e668342c11",
      "name": "Solicitud de Investigación Webhook",
      "type": "n8n-nodes-base.webhook",
      "position": [
        -2048,
        624
      ],
      "webhookId": "5a9368a9-013f-41db-82cc-18be19ea6684",
      "parameters": {
        "path": "research-trigger",
        "options": {},
        "httpMethod": "POST",
        "responseMode": "responseNode"
      },
      "typeVersion": 1.1
    },
    {
      "id": "5d8a05fa-1528-4dc4-95cd-d99625a2221b",
      "name": "Procesador de Configuración de Investigación",
      "type": "n8n-nodes-base.code",
      "position": [
        -1760,
        624
      ],
      "parameters": {
        "jsCode": "// Extract and validate research parameters\nconst body = $input.all()[0].json.body;\n\n// Default research configuration\nconst researchConfig = {\n  topic: body.topic || 'artificial intelligence trends',\n  depth: body.depth || 'comprehensive', // basic, detailed, comprehensive\n  sources: body.sources || ['web', 'academic', 'news'],\n  timeframe: body.timeframe || '6months',\n  language: body.language || 'en',\n  maxSources: body.maxSources || 10,\n  analysisType: body.analysisType || 'summary' // summary, detailed, comparative\n};\n\n// Generate search queries based on topic\nconst baseQueries = [\n  `${researchConfig.topic} latest developments`,\n  `${researchConfig.topic} research findings`,\n  `${researchConfig.topic} market analysis`,\n  `${researchConfig.topic} expert opinions`,\n  `${researchConfig.topic} case studies`\n];\n\n// Add specific queries based on depth\nif (researchConfig.depth === 'comprehensive') {\n  baseQueries.push(\n    `${researchConfig.topic} academic papers`,\n    `${researchConfig.topic} industry reports`,\n    `${researchConfig.topic} statistical data`,\n    `${researchConfig.topic} future predictions`\n  );\n}\n\nreturn [{\n  json: {\n    ...researchConfig,\n    searchQueries: baseQueries,\n    timestamp: new Date().toISOString(),\n    sessionId: `research_${Date.now()}`\n  }\n}];"
      },
      "typeVersion": 2
    },
    {
      "id": "19e3c76b-f0fb-4324-b212-585ab132bde5",
      "name": "Dividir Consultas de Búsqueda",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        -1456,
        624
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 3
    },
    {
      "id": "6eb0ff10-aaf6-430f-aea0-7c0cbe950b95",
      "name": "Selector de Consultas",
      "type": "n8n-nodes-base.code",
      "position": [
        -1152,
        624
      ],
      "parameters": {
        "jsCode": "// Get current batch data\nconst items = $input.all();\nconst currentItem = items[0].json;\nconst queries = currentItem.searchQueries;\nconst currentBatch = $('Split Search Queries').item.json;\n\n// Get current query\nconst currentQuery = queries[currentBatch.index];\n\nreturn [{\n  json: {\n    ...currentItem,\n    currentQuery: currentQuery,\n    batchIndex: currentBatch.index\n  }\n}];"
      },
      "typeVersion": 2
    },
    {
      "id": "99f73593-0ddd-4fc9-810f-8b1793cd8476",
      "name": "Rastreador de Investigación con IA",
      "type": "n8n-nodes-scrapegraphai.scrapegraphAi",
      "position": [
        -848,
        624
      ],
      "parameters": {
        "userPrompt": "Research and extract comprehensive information about this topic. Provide: 1) Key findings and insights, 2) Important statistics or data points, 3) Expert quotes or opinions, 4) Recent developments, 5) Source credibility assessment. Format as structured JSON with fields: title, summary, keyPoints, statistics, quotes, sources, credibilityScore, datePublished, relevanceScore.",
        "websiteUrl": "={{ $json.currentQuery }}"
      },
      "typeVersion": 1
    },
    {
      "id": "da52e96d-0aa2-41ef-886e-bd396e0f42f2",
      "name": "Rastreador de Fuentes de Noticias",
      "type": "n8n-nodes-scrapegraphai.scrapegraphAi",
      "position": [
        -848,
        832
      ],
      "parameters": {
        "userPrompt": "Extract recent news articles about this topic. For each article provide: headline, publication date, source, brief summary, and direct URL. Focus on credible news sources and recent publications within the last 6 months.",
        "websiteUrl": "https://www.google.com/search?q={{ encodeURIComponent($json.currentQuery) }}&tbm=nws"
      },
      "typeVersion": 1
    },
    {
      "id": "0ee6cf16-02e5-4a3b-b068-dd76a1351718",
      "name": "Rastreador de Fuentes Académicas",
      "type": "n8n-nodes-scrapegraphai.scrapegraphAi",
      "position": [
        -848,
        1024
      ],
      "parameters": {
        "userPrompt": "Extract academic papers and research studies. For each paper provide: title, authors, publication year, journal/conference, citation count, abstract summary, and DOI/URL if available. Focus on peer-reviewed sources and recent publications.",
        "websiteUrl": "https://scholar.google.com/scholar?q={{ encodeURIComponent($json.currentQuery) }}"
      },
      "typeVersion": 1
    },
    {
      "id": "3228908f-f816-4a0c-889b-abf756281eb8",
      "name": "Combinar Fuentes de Investigación",
      "type": "n8n-nodes-base.merge",
      "position": [
        -560,
        832
      ],
      "parameters": {
        "mode": "combine",
        "options": {},
        "mergeByFields": {
          "values": [
            {}
          ]
        }
      },
      "typeVersion": 2.1
    },
    {
      "id": "90b55ee1-3404-4db2-aec1-6d6219043c09",
      "name": "Procesador de Datos de Investigación",
      "type": "n8n-nodes-base.code",
      "position": [
        -256,
        832
      ],
      "parameters": {
        "jsCode": "// Combine and process all research data\nconst allItems = $input.all();\nconst researchData = allItems[0].json;\nconst newsData = allItems[1]?.json || {};\nconst academicData = allItems[2]?.json || {};\n\n// Extract and structure the research findings\nconst processedData = {\n  sessionId: researchData.sessionId,\n  query: researchData.currentQuery,\n  batchIndex: researchData.batchIndex,\n  timestamp: new Date().toISOString(),\n  \n  // General research findings\n  generalFindings: {\n    title: researchData.result?.title || 'Research Findings',\n    summary: researchData.result?.summary || '',\n    keyPoints: researchData.result?.keyPoints || [],\n    statistics: researchData.result?.statistics || [],\n    credibilityScore: researchData.result?.credibilityScore || 0\n  },\n  \n  // News findings\n  newsFindings: {\n    articles: newsData.result?.articles || [],\n    totalArticles: newsData.result?.articles?.length || 0\n  },\n  \n  // Academic findings\n  academicFindings: {\n    papers: academicData.result?.papers || [],\n    totalPapers: academicData.result?.papers?.length || 0\n  },\n  \n  // Meta information\n  sourceTypes: ['general', 'news', 'academic'],\n  totalSources: (researchData.result?.sources?.length || 0) + \n                (newsData.result?.articles?.length || 0) + \n                (academicData.result?.papers?.length || 0)\n};\n\nreturn [{\n  json: processedData\n}];"
      },
      "typeVersion": 2
    },
    {
      "id": "7eb34b80-f6d2-4e80-83f5-529d4748cbec",
      "name": "Almacenamiento de Datos de Investigación",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        352,
        832
      ],
      "parameters": {
        "columns": {
          "value": {},
          "schema": [
            {
              "id": "sessionId",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Session ID",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "query",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Research Query",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "timestamp",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Timestamp",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "analysis",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "AI Analysis",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "totalSources",
              "type": "number",
              "display": true,
              "required": false,
              "displayName": "Total Sources",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "autoMapInputData",
          "matchingColumns": []
        },
        "options": {},
        "operation": "append",
        "sheetName": {
          "__rl": true,
          "mode": "name",
          "value": "Research_Data"
        },
        "documentId": {
          "__rl": true,
          "mode": "url",
          "value": ""
        }
      },
      "typeVersion": 4.5
    },
    {
      "id": "d093ce1d-9716-4254-89b7-4b8bffd23b48",
      "name": "Respuesta de Investigación Completada",
      "type": "n8n-nodes-base.respondToWebhook",
      "position": [
        656,
        832
      ],
      "parameters": {
        "options": {},
        "respondWith": "json",
        "responseBody": "={{ JSON.stringify({\n  status: 'completed',\n  sessionId: $json.sessionId,\n  message: 'Research analysis completed successfully',\n  totalSources: $json.totalSources,\n  timestamp: $json.timestamp\n}) }}"
      },
      "typeVersion": 1.1
    },
    {
      "id": "8398d709-67b8-4ad4-90f0-d2c041d4678e",
      "name": "Guía de Activación Webhook",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -2160,
        -448
      ],
      "parameters": {
        "color": 2,
        "width": 520,
        "height": 1732,
        "content": "# Step 1: Research Request Webhook 🎯\n\nThis webhook endpoint receives research requests and initiates the deep research process.\n\n## Request Format\n```json\n{\n  \"topic\": \"artificial intelligence in healthcare\",\n  \"depth\": \"comprehensive\",\n  \"sources\": [\"web\", \"academic\", \"news\"],\n  \"timeframe\": \"6months\",\n  \"maxSources\": 15,\n  \"analysisType\": \"detailed\"\n}\n```\n\n## Configuration\n- **Method**: POST\n- **Path**: /research-trigger\n- **Authentication**: Optional API key\n- **Rate Limiting**: Configurable\n\n## Depth Levels\n- **Basic**: Quick overview with 3-5 sources\n- **Detailed**: Comprehensive analysis with 8-12 sources\n- **Comprehensive**: Deep dive with 15+ sources and academic papers\n\n## Source Types\n- **Web**: General web content and industry sites\n- **News**: Recent news articles and press releases\n- **Academic**: Peer-reviewed papers and research studies"
      },
      "typeVersion": 1
    },
    {
      "id": "965963f7-6f98-4954-a0f0-916ab00477be",
      "name": "Guía de Configuración",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1600,
        -448
      ],
      "parameters": {
        "color": 2,
        "width": 520,
        "height": 1748,
        "content": "# Step 2: Research Configuration Processor 🔧\n\nThis node processes and validates the incoming research request, setting up the research parameters.\n\n## What it does\n- Validates and sanitizes input parameters\n- Sets default values for missing parameters\n- Generates multiple search queries based on topic\n- Creates unique session ID for tracking\n- Configures research depth and scope\n\n## Query Generation Strategy\n- **Base Queries**: Core topic searches\n- **Depth-Specific**: Additional queries for comprehensive research\n- **Time-Sensitive**: Recent developments and trends\n- **Multi-Angle**: Different perspectives and viewpoints\n\n## Customization Options\n- Modify query generation logic\n- Add industry-specific search patterns\n- Implement custom validation rules\n- Configure default research parameters"
      },
      "typeVersion": 1
    },
    {
      "id": "47a160d4-d829-4133-93fa-aa4dbd41f785",
      "name": "Guía de Rastreo con IA",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1040,
        -448
      ],
      "parameters": {
        "color": 3,
        "width": 520,
        "height": 1748,
        "content": "# Step 3: Multi-Source AI Scraping 🤖\n\nThree parallel AI-powered scrapers collect data from different source types for comprehensive research coverage.\n\n## AI Research Scraper\n- **Purpose**: General web research and industry insights\n- **Focus**: Key findings, statistics, expert opinions\n- **Output**: Structured insights with credibility scores\n\n## News Sources Scraper\n- **Purpose**: Recent news and current developments\n- **Focus**: Headlines, publication dates, credible sources\n- **Output**: Timestamped news articles with summaries\n\n## Academic Sources Scraper\n- **Purpose**: Peer-reviewed research and scholarly articles\n- **Focus**: Academic papers, citations, research studies\n- **Output**: Scientific literature with metadata\n\n## ScrapeGraphAI Benefits\n- **AI-Powered**: Intelligent content extraction\n- **Structured Output**: Consistent data format\n- **Source Validation**: Credibility assessment\n- **Multi-Language**: Global research capability"
      },
      "typeVersion": 1
    },
    {
      "id": "503cdf42-cee7-4b44-a2fd-4f4a4a134f60",
      "name": "Guía de Procesamiento y Análisis",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -464,
        -448
      ],
      "parameters": {
        "color": 3,
        "width": 520,
        "height": 1748,
        "content": "# Step 4: Data Processing & AI Analysis 🧠\n\nAdvanced data processing and AI-powered analysis to generate actionable insights from collected research data.\n\n## Research Data Processor\n- **Combines**: All source types into unified structure\n- **Validates**: Data quality and completeness\n- **Enriches**: Metadata and source attribution\n- **Structures**: For optimal analysis and storage\n\n## AI Research Analyst\n- **Model**: GPT-4 for sophisticated analysis\n- **Analysis Types**: Summary, trends, conflicts, reliability\n- **Output**: Executive summary with actionable insights\n- **Temperature**: Low (0.3) for consistent, factual analysis\n\n## Analysis Components\n1. **Executive Summary**: High-level overview\n2. **Key Insights**: Major findings and trends\n3. **Reliability Assessment**: Source credibility evaluation\n4. **Recommendations**: Actionable next steps\n5. **Further Research**: Suggested investigation areas"
      },
      "typeVersion": 1
    },
    {
      "id": "0105d893-94ce-465d-9ef8-8f144280f0c9",
      "name": "Guía de Almacenamiento y Respuesta",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        144,
        -432
      ],
      "parameters": {
        "color": 4,
        "width": 840,
        "height": 1716,
        "content": "# Step 5: Data Storage & Response 📊\n\nSecure storage of research findings and structured response delivery for seamless integration with other systems.\n\n## Google Sheets Storage\n- **Sheet Structure**: Research_Data with comprehensive columns\n- **Data Retention**: Historical research for trend analysis\n- **Access Control**: Secure OAuth2 authentication\n- **Format**: Structured data ready for analysis and reporting\n\n## Response Delivery\n- **Format**: JSON with status and metadata\n- **Content**: Session ID, completion status, source count\n- **Integration**: Ready for webhook consumers and APIs\n- **Tracking**: Unique session IDs for research correlation\n\n## Data Management Features\n- **Versioning**: Track research iterations\n- **Export**: Multiple format support\n- **Sharing**: Team collaboration capabilities\n- **Analytics**: Built-in Google Sheets analysis tools\n\n## Use Cases\n- **Market Research**: Competitive analysis and trends\n- **Academic Research**: Literature reviews and citations\n- **Business Intelligence**: Industry insights and reports"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "076dd376-d6cb-4851-b335-e074cd47911c",
  "connections": {
    "6eb0ff10-aaf6-430f-aea0-7c0cbe950b95": {
      "main": [
        [
          {
            "node": "99f73593-0ddd-4fc9-810f-8b1793cd8476",
            "type": "main",
            "index": 0
          },
          {
            "node": "da52e96d-0aa2-41ef-886e-bd396e0f42f2",
            "type": "main",
            "index": 0
          },
          {
            "node": "0ee6cf16-02e5-4a3b-b068-dd76a1351718",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "99f73593-0ddd-4fc9-810f-8b1793cd8476": {
      "main": [
        [
          {
            "node": "3228908f-f816-4a0c-889b-abf756281eb8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "da52e96d-0aa2-41ef-886e-bd396e0f42f2": {
      "main": [
        [
          {
            "node": "3228908f-f816-4a0c-889b-abf756281eb8",
            "type": "main",
            "index": 1
          }
        ]
      ]
    },
    "19e3c76b-f0fb-4324-b212-585ab132bde5": {
      "main": [
        [
          {
            "node": "6eb0ff10-aaf6-430f-aea0-7c0cbe950b95",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "7eb34b80-f6d2-4e80-83f5-529d4748cbec": {
      "main": [
        [
          {
            "node": "d093ce1d-9716-4254-89b7-4b8bffd23b48",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "3228908f-f816-4a0c-889b-abf756281eb8": {
      "main": [
        [
          {
            "node": "90b55ee1-3404-4db2-aec1-6d6219043c09",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "90b55ee1-3404-4db2-aec1-6d6219043c09": {
      "main": [
        [
          {
            "node": "7eb34b80-f6d2-4e80-83f5-529d4748cbec",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "48a84828-73de-4f4b-beb1-60e668342c11": {
      "main": [
        [
          {
            "node": "5d8a05fa-1528-4dc4-95cd-d99625a2221b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "5d8a05fa-1528-4dc4-95cd-d99625a2221b": {
      "main": [
        [
          {
            "node": "19e3c76b-f0fb-4324-b212-585ab132bde5",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Preguntas frecuentes

¿Cómo usar este flujo de trabajo?

Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.

¿En qué escenarios es adecuado este flujo de trabajo?

Avanzado - Investigación de mercado, Resumen de IA

¿Es de pago?

Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.

Información del flujo de trabajo
Nivel de dificultad
Avanzado
Número de nodos16
Categoría2
Tipos de nodos8
Descripción de la dificultad

Adecuado para usuarios avanzados, flujos de trabajo complejos con 16+ nodos

Enlaces externos
Ver en n8n.io

Compartir este flujo de trabajo

Categorías

Categorías: 34