Rastreador de huella de carbono

Avanzado

Este es unDocument Extraction, AI Summarizationflujo de automatización del dominio deautomatización que contiene 16 nodos.Utiliza principalmente nodos como Code, GoogleDrive, ScheduleTrigger, ScrapegraphAi. Analizador de huella de carbono y rastreador de informes ESG de Google Drive con ScrapeGraphAI

Requisitos previos
  • Credenciales de API de Google Drive
Vista previa del flujo de trabajo
Visualización de las conexiones entre nodos, con soporte para zoom y panorámica
Exportar flujo de trabajo
Copie la siguiente configuración JSON en n8n para importar y usar este flujo de trabajo
{
  "id": "CarbonFootprintTracker2025",
  "meta": {
    "instanceId": "carbon-tracker-sustainability-workflow-n8n",
    "templateCredsSetupCompleted": false
  },
  "name": "Carbon Footprint Tracker",
  "tags": [
    "sustainability",
    "esg",
    "carbon-footprint",
    "environmental",
    "reporting"
  ],
  "nodes": [
    {
      "id": "a1b2c3d4-e5f6-7890-abcd-ef1234567890",
      "name": "Activador Programado",
      "type": "n8n-nodes-base.scheduleTrigger",
      "position": [
        300,
        800
      ],
      "parameters": {
        "rule": {
          "interval": [
            {
              "field": "cronExpression",
              "expression": "0 8 * * *"
            }
          ]
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "b2c3d4e5-f6g7-8901-bcde-f23456789012",
      "name": "Rastreador de Datos de Energía",
      "type": "n8n-nodes-scrapegraphai.scrapegraphAi",
      "position": [
        600,
        700
      ],
      "parameters": {
        "userPrompt": "Extract energy consumption data and carbon emission factors. Use this schema: { \"energy_type\": \"electricity\", \"consumption_value\": \"1000\", \"unit\": \"kWh\", \"carbon_factor\": \"0.92\", \"emission_unit\": \"lbs CO2/kWh\", \"source\": \"EPA\", \"last_updated\": \"2024-01-15\" }",
        "websiteUrl": "https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator"
      },
      "credentials": {
        "scrapegraphAIApi": {
          "id": "",
          "name": ""
        }
      },
      "typeVersion": 1
    },
    {
      "id": "c3d4e5f6-g7h8-9012-cdef-345678901234",
      "name": "Rastreador de Datos de Transporte",
      "type": "n8n-nodes-scrapegraphai.scrapegraphAi",
      "position": [
        600,
        900
      ],
      "parameters": {
        "userPrompt": "Extract transportation emission factors and fuel efficiency data. Use this schema: { \"vehicle_type\": \"passenger_car\", \"fuel_type\": \"gasoline\", \"mpg\": \"25.4\", \"co2_per_gallon\": \"19.6\", \"co2_per_mile\": \"0.77\", \"unit\": \"lbs CO2\", \"source\": \"EPA\", \"category\": \"transport\" }",
        "websiteUrl": "https://www.fueleconomy.gov/feg/co2.jsp"
      },
      "credentials": {
        "scrapegraphAIApi": {
          "id": "",
          "name": ""
        }
      },
      "typeVersion": 1
    },
    {
      "id": "d4e5f6g7-h8i9-0123-defg-456789012345",
      "name": "Calculadora de Huella",
      "type": "n8n-nodes-base.code",
      "position": [
        1000,
        800
      ],
      "parameters": {
        "jsCode": "// Carbon Footprint Calculator\nconst energyData = $input.item(0).json;\nconst transportData = $input.item(1).json;\n\n// Sample organizational data (in real scenario, this would come from your systems)\nconst organizationData = {\n  electricity_consumption: 50000, // kWh/month\n  natural_gas: 2000, // therms/month\n  fleet_miles: 15000, // miles/month\n  employee_commute: 25000, // miles/month\n  air_travel: 50000, // miles/month\n  employees: 100\n};\n\nfunction calculateCarbonFootprint(energyFactors, transportFactors, orgData) {\n  const calculations = {\n    scope1: {\n      natural_gas: orgData.natural_gas * 11.7, // lbs CO2 per therm\n      fleet_fuel: (orgData.fleet_miles / 25.4) * 19.6 // assuming 25.4 mpg\n    },\n    scope2: {\n      electricity: orgData.electricity_consumption * 0.92 // lbs CO2 per kWh\n    },\n    scope3: {\n      employee_commute: orgData.employee_commute * 0.77, // lbs CO2 per mile\n      air_travel: orgData.air_travel * 0.53, // lbs CO2 per mile\n      supply_chain: orgData.electricity_consumption * 0.1 // estimated\n    }\n  };\n\n  const totalScope1 = Object.values(calculations.scope1).reduce((a, b) => a + b, 0);\n  const totalScope2 = Object.values(calculations.scope2).reduce((a, b) => a + b, 0);\n  const totalScope3 = Object.values(calculations.scope3).reduce((a, b) => a + b, 0);\n  \n  const totalEmissions = totalScope1 + totalScope2 + totalScope3;\n  const emissionsPerEmployee = totalEmissions / orgData.employees;\n  \n  return {\n    timestamp: new Date().toISOString(),\n    total_emissions_lbs: Math.round(totalEmissions),\n    total_emissions_tons: Math.round(totalEmissions / 2000 * 100) / 100,\n    emissions_per_employee: Math.round(emissionsPerEmployee * 100) / 100,\n    scope1_total: Math.round(totalScope1),\n    scope2_total: Math.round(totalScope2),\n    scope3_total: Math.round(totalScope3),\n    breakdown: calculations,\n    baseline_data: orgData\n  };\n}\n\nconst footprintResults = calculateCarbonFootprint(\n  energyData.result || energyData,\n  transportData.result || transportData,\n  organizationData\n);\n\nreturn [{ json: footprintResults }];"
      },
      "typeVersion": 2
    },
    {
      "id": "e5f6g7h8-i9j0-1234-efgh-567890123456",
      "name": "Buscador de Oportunidades de Reducción",
      "type": "n8n-nodes-base.code",
      "position": [
        1400,
        800
      ],
      "parameters": {
        "jsCode": "// Reduction Opportunity Finder\nconst footprintData = $input.first().json;\n\nfunction findReductionOpportunities(data) {\n  const opportunities = [];\n  const currentEmissions = data.total_emissions_tons;\n  \n  // Energy efficiency opportunities\n  if (data.scope2_total > data.scope1_total * 0.5) {\n    opportunities.push({\n      category: 'Energy Efficiency',\n      opportunity: 'LED lighting upgrade',\n      potential_reduction_tons: Math.round(currentEmissions * 0.08 * 100) / 100,\n      investment_required: '$25,000',\n      payback_period: '2.5 years',\n      priority: 'High',\n      implementation_effort: 'Medium'\n    });\n    \n    opportunities.push({\n      category: 'Renewable Energy',\n      opportunity: 'Solar panel installation',\n      potential_reduction_tons: Math.round(currentEmissions * 0.25 * 100) / 100,\n      investment_required: '$150,000',\n      payback_period: '7 years',\n      priority: 'High',\n      implementation_effort: 'High'\n    });\n  }\n  \n  // Transportation opportunities\n  if (data.breakdown.scope3.employee_commute > 5000) {\n    opportunities.push({\n      category: 'Transportation',\n      opportunity: 'Remote work policy (3 days/week)',\n      potential_reduction_tons: Math.round(currentEmissions * 0.12 * 100) / 100,\n      investment_required: '$10,000',\n      payback_period: '6 months',\n      priority: 'High',\n      implementation_effort: 'Low'\n    });\n    \n    opportunities.push({\n      category: 'Transportation',\n      opportunity: 'Electric vehicle fleet transition',\n      potential_reduction_tons: Math.round(currentEmissions * 0.15 * 100) / 100,\n      investment_required: '$200,000',\n      payback_period: '5 years',\n      priority: 'Medium',\n      implementation_effort: 'High'\n    });\n  }\n  \n  // Office efficiency\n  opportunities.push({\n    category: 'Office Operations',\n    opportunity: 'Smart HVAC system',\n    potential_reduction_tons: Math.round(currentEmissions * 0.06 * 100) / 100,\n    investment_required: '$40,000',\n    payback_period: '4 years',\n    priority: 'Medium',\n    implementation_effort: 'Medium'\n  });\n  \n  const totalPotentialReduction = opportunities.reduce(\n    (sum, opp) => sum + opp.potential_reduction_tons, 0\n  );\n  \n  return {\n    current_footprint: data,\n    opportunities: opportunities,\n    total_potential_reduction_tons: Math.round(totalPotentialReduction * 100) / 100,\n    potential_reduction_percentage: Math.round((totalPotentialReduction / currentEmissions) * 100),\n    analysis_date: new Date().toISOString()\n  };\n}\n\nconst reductionAnalysis = findReductionOpportunities(footprintData);\n\nreturn [{ json: reductionAnalysis }];"
      },
      "typeVersion": 2
    },
    {
      "id": "f6g7h8i9-j0k1-2345-fghi-678901234567",
      "name": "Panel de Sostenibilidad",
      "type": "n8n-nodes-base.code",
      "position": [
        1800,
        800
      ],
      "parameters": {
        "jsCode": "// Sustainability Dashboard Data Formatter\nconst analysisData = $input.first().json;\n\nfunction createDashboardData(data) {\n  const footprint = data.current_footprint;\n  const opportunities = data.opportunities;\n  \n  // KPI Cards Data\n  const kpis = {\n    total_emissions: {\n      value: footprint.total_emissions_tons,\n      unit: 'tons CO2e',\n      trend: '+5.2%', // This would be calculated from historical data\n      status: footprint.total_emissions_tons > 100 ? 'warning' : 'good'\n    },\n    emissions_per_employee: {\n      value: footprint.emissions_per_employee,\n      unit: 'lbs CO2e/employee',\n      trend: '+2.1%',\n      status: 'improving'\n    },\n    reduction_potential: {\n      value: data.potential_reduction_percentage,\n      unit: '%',\n      trend: 'new',\n      status: 'opportunity'\n    },\n    cost_savings_potential: {\n      value: Math.round(data.total_potential_reduction_tons * 50), // $50 per ton estimate\n      unit: '$/year',\n      trend: 'projected',\n      status: 'positive'\n    }\n  };\n  \n  // Scope Breakdown for Charts\n  const scopeBreakdown = {\n    labels: ['Scope 1 (Direct)', 'Scope 2 (Electricity)', 'Scope 3 (Indirect)'],\n    data: [footprint.scope1_total, footprint.scope2_total, footprint.scope3_total],\n    colors: ['#FF6B6B', '#4ECDC4', '#45B7D1']\n  };\n  \n  // Monthly Trend (simulated - would be from historical data)\n  const monthlyTrend = {\n    labels: ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'],\n    emissions: [85, 78, 92, 88, 95, footprint.total_emissions_tons],\n    target: [80, 80, 80, 80, 80, 80]\n  };\n  \n  // Top Opportunities for Action Items\n  const topOpportunities = opportunities\n    .sort((a, b) => b.potential_reduction_tons - a.potential_reduction_tons)\n    .slice(0, 5)\n    .map(opp => ({\n      ...opp,\n      impact_score: Math.round((opp.potential_reduction_tons / data.total_potential_reduction_tons) * 100)\n    }));\n  \n  return {\n    dashboard_data: {\n      kpis: kpis,\n      scope_breakdown: scopeBreakdown,\n      monthly_trend: monthlyTrend,\n      top_opportunities: topOpportunities,\n      last_updated: new Date().toISOString(),\n      next_update: new Date(Date.now() + 24*60*60*1000).toISOString()\n    },\n    raw_analysis: data\n  };\n}\n\nconst dashboardData = createDashboardData(analysisData);\n\nreturn [{ json: dashboardData }];"
      },
      "typeVersion": 2
    },
    {
      "id": "g7h8i9j0-k1l2-3456-ghij-789012345678",
      "name": "Generador de Informes ESG",
      "type": "n8n-nodes-base.code",
      "position": [
        2200,
        800
      ],
      "parameters": {
        "jsCode": "// ESG Report Generator\nconst dashboardData = $input.first().json;\nconst data = dashboardData.raw_analysis;\nconst kpis = dashboardData.dashboard_data.kpis;\n\nfunction generateESGReport(analysisData, kpiData) {\n  const reportDate = new Date().toLocaleDateString('en-US', {\n    year: 'numeric',\n    month: 'long',\n    day: 'numeric'\n  });\n  \n  const executiveSummary = `\n**EXECUTIVE SUMMARY**\n\nOur organization's current carbon footprint stands at ${analysisData.current_footprint.total_emissions_tons} tons CO2e, with emissions per employee at ${analysisData.current_footprint.emissions_per_employee} lbs CO2e. \n\nWe have identified ${analysisData.opportunities.length} key reduction opportunities that could decrease our emissions by ${analysisData.potential_reduction_percentage}% (${analysisData.total_potential_reduction_tons} tons CO2e annually).\n\n**KEY FINDINGS:**\n• Scope 2 emissions (electricity) represent ${Math.round((analysisData.current_footprint.scope2_total / analysisData.current_footprint.total_emissions_lbs) * 100)}% of total emissions\n• Transportation accounts for ${Math.round(((analysisData.current_footprint.breakdown.scope3.employee_commute + analysisData.current_footprint.breakdown.scope1.fleet_fuel) / analysisData.current_footprint.total_emissions_lbs) * 100)}% of our footprint\n• High-impact, low-cost opportunities exist in remote work policies and energy efficiency\n  `;\n  \n  const emissionsBreakdown = `\n**EMISSIONS BREAKDOWN**\n\n**Scope 1 (Direct Emissions): ${Math.round(analysisData.current_footprint.scope1_total/2000*100)/100} tons CO2e**\n• Natural Gas: ${Math.round(analysisData.current_footprint.breakdown.scope1.natural_gas)} lbs CO2e\n• Fleet Vehicles: ${Math.round(analysisData.current_footprint.breakdown.scope1.fleet_fuel)} lbs CO2e\n\n**Scope 2 (Indirect - Electricity): ${Math.round(analysisData.current_footprint.scope2_total/2000*100)/100} tons CO2e**\n• Purchased Electricity: ${Math.round(analysisData.current_footprint.breakdown.scope2.electricity)} lbs CO2e\n\n**Scope 3 (Other Indirect): ${Math.round(analysisData.current_footprint.scope3_total/2000*100)/100} tons CO2e**\n• Employee Commuting: ${Math.round(analysisData.current_footprint.breakdown.scope3.employee_commute)} lbs CO2e\n• Business Travel: ${Math.round(analysisData.current_footprint.breakdown.scope3.air_travel)} lbs CO2e\n• Supply Chain: ${Math.round(analysisData.current_footprint.breakdown.scope3.supply_chain)} lbs CO2e\n  `;\n  \n  const opportunitiesSection = analysisData.opportunities.map(opp => \n    `• **${opp.opportunity}** (${opp.category})\\n  Reduction: ${opp.potential_reduction_tons} tons CO2e | Investment: ${opp.investment_required} | Priority: ${opp.priority}`\n  ).join('\\n\\n');\n  \n  const recommendations = `\n**STRATEGIC RECOMMENDATIONS**\n\n**Immediate Actions (0-6 months):**\n1. Implement remote work policy (3 days/week) - High impact, low cost\n2. Upgrade to LED lighting across all facilities\n3. Establish employee sustainability awareness program\n\n**Medium-term Goals (6-18 months):**\n1. Install smart HVAC systems with automated controls\n2. Conduct comprehensive energy audit of all facilities\n3. Develop supplier sustainability scorecard\n\n**Long-term Commitments (1-3 years):**\n1. Transition to renewable energy sources (solar installation)\n2. Electrify vehicle fleet where feasible\n3. Achieve carbon neutrality through verified offsets\n\n**Financial Impact:**\nTotal estimated annual savings from all initiatives: $${Math.round(analysisData.total_potential_reduction_tons * 50).toLocaleString()}\nPayback period for major investments: 3-7 years\n  `;\n  \n  const fullReport = `\n# 🌱 CARBON FOOTPRINT & ESG REPORT\n**Generated: ${reportDate}**\n**Reporting Period: Current Month**\n**Organization: [Company Name]**\n\n${executiveSummary}\n\n${emissionsBreakdown}\n\n**REDUCTION OPPORTUNITIES**\n\n${opportunitiesSection}\n\n${recommendations}\n\n**COMPLIANCE & BENCHMARKING**\n• Current emissions intensity: ${analysisData.current_footprint.emissions_per_employee} lbs CO2e per employee\n• Industry benchmark: 1,200-1,800 lbs CO2e per employee (service sector)\n• Science-based target alignment: Reduction pathway defined for 1.5°C scenario\n\n**NEXT STEPS**\n1. Present findings to executive leadership\n2. Allocate budget for priority initiatives\n3. Establish monthly monitoring and reporting cadence\n4. Engage employees in sustainability initiatives\n\n---\n*This report was automatically generated using real-time data collection and analysis. For questions or detailed implementation planning, contact the Sustainability Team.*\n  `;\n  \n  return {\n    report_text: fullReport,\n    report_date: reportDate,\n    report_type: 'Carbon Footprint & ESG Analysis',\n    key_metrics: {\n      total_emissions: analysisData.current_footprint.total_emissions_tons,\n      reduction_potential: analysisData.potential_reduction_percentage,\n      cost_savings_potential: Math.round(analysisData.total_potential_reduction_tons * 50),\n      opportunities_count: analysisData.opportunities.length\n    },\n    file_name: `Carbon_Footprint_Report_${new Date().toISOString().split('T')[0]}.md`\n  };\n}\n\nconst esgReport = generateESGReport(data, kpis);\n\nreturn [{ json: esgReport }];"
      },
      "typeVersion": 2
    },
    {
      "id": "h8i9j0k1-l2m3-4567-hijk-890123456789",
      "name": "Crear Carpeta de Informes",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        2600,
        700
      ],
      "parameters": {
        "name": "ESG_Reports",
        "options": {},
        "resource": "folder",
        "operation": "create"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "",
          "name": ""
        }
      },
      "typeVersion": 3
    },
    {
      "id": "i9j0k1l2-m3n4-5678-ijkl-901234567890",
      "name": "Guardar Informe en Drive",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        2600,
        900
      ],
      "parameters": {
        "name": "={{ $json.file_name }}",
        "driveId": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $node['Create Reports Folder'].json.id }}"
        },
        "options": {
          "parents": [
            "={{ $node['Create Reports Folder'].json.id }}"
          ]
        },
        "operation": "upload",
        "binaryData": false,
        "fileContent": "={{ $json.report_text }}"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "",
          "name": ""
        }
      },
      "typeVersion": 3
    },
    {
      "id": "sticky1-abcd-efgh-ijkl-mnop12345678",
      "name": "Información del Activador",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        100,
        450
      ],
      "parameters": {
        "color": 5,
        "width": 520,
        "height": 580,
        "content": "# Step 1: Daily Trigger ⏰\n\nThis trigger runs the carbon footprint analysis daily at 8:00 AM.\n\n## Configuration Options\n- **Schedule**: Daily at 8:00 AM (customizable)\n- **Alternative**: Manual trigger for on-demand analysis\n- **Timezone**: Adjustable based on your location\n\n## Purpose\n- Ensures consistent daily monitoring\n- Captures real-time data changes\n- Maintains historical tracking"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky2-bcde-fghi-jklm-nopq23456789",
      "name": "Información de Recolección de Datos",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        400,
        450
      ],
      "parameters": {
        "color": 4,
        "width": 520,
        "height": 580,
        "content": "# Step 2: Data Collection 🌐\n\n**Energy Data Scraper** and **Transport Data Scraper** work in parallel to gather emission factors.\n\n## What it does\n- Scrapes EPA energy consumption data\n- Collects transportation emission factors\n- Gathers fuel efficiency metrics\n- Updates carbon conversion factors\n\n## Data Sources\n- EPA Greenhouse Gas Calculator\n- FuelEconomy.gov\n- Energy.gov databases"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky3-cdef-ghij-klmn-opqr34567890",
      "name": "Información de la Calculadora",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        800,
        450
      ],
      "parameters": {
        "color": 3,
        "width": 520,
        "height": 580,
        "content": "# Step 3: Footprint Calculator 🧮\n\nCalculates comprehensive carbon footprint across all scopes.\n\n## Calculations Include\n- **Scope 1**: Direct emissions (gas, fleet)\n- **Scope 2**: Electricity consumption\n- **Scope 3**: Commuting, travel, supply chain\n- **Per-employee metrics**\n- **Monthly comparisons**\n\n## Output\n- Total emissions in tons CO2e\n- Detailed breakdown by source\n- Baseline data for tracking"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky4-defg-hijk-lmno-pqrs45678901",
      "name": "Información de Oportunidades",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1200,
        450
      ],
      "parameters": {
        "color": 6,
        "width": 520,
        "height": 580,
        "content": "# Step 4: Opportunity Analysis 🎯\n\nIdentifies specific reduction opportunities with ROI analysis.\n\n## Analysis Areas\n- **Energy Efficiency**: LED, HVAC, smart systems\n- **Renewable Energy**: Solar, wind options\n- **Transportation**: Remote work, EV fleet\n- **Operations**: Process improvements\n\n## For Each Opportunity\n- Potential CO2 reduction\n- Investment required\n- Payback period\n- Implementation difficulty"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky5-efgh-ijkl-mnop-qrst56789012",
      "name": "Información del Panel",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1600,
        450
      ],
      "parameters": {
        "color": 2,
        "width": 520,
        "height": 580,
        "content": "# Step 5: Dashboard Preparation 📊\n\nFormats data for sustainability dashboard visualization.\n\n## Dashboard Elements\n- **KPI Cards**: Key metrics with trends\n- **Scope Breakdown**: Pie charts by emission source\n- **Monthly Trends**: Historical progress tracking\n- **Action Items**: Priority opportunities\n\n## Data Outputs\n- Chart-ready JSON data\n- KPI summaries\n- Status indicators\n- Performance trends"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky6-fghi-jklm-nopq-rstu67890123",
      "name": "Información del Informe ESG",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2000,
        450
      ],
      "parameters": {
        "color": 1,
        "width": 520,
        "height": 580,
        "content": "# Step 6: ESG Report Generation 📋\n\nCreates comprehensive ESG compliance report.\n\n## Report Sections\n- **Executive Summary**: Key findings\n- **Emissions Breakdown**: Detailed analysis\n- **Reduction Opportunities**: Prioritized list\n- **Strategic Recommendations**: Action plan\n- **Financial Impact**: Cost-benefit analysis\n\n## Compliance Features\n- Science-based targets alignment\n- Industry benchmarking\n- Regulatory compliance tracking"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky7-ghij-klmn-opqr-stuv78901234",
      "name": "Información de Almacenamiento",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2400,
        450
      ],
      "parameters": {
        "color": 7,
        "width": 520,
        "height": 580,
        "content": "# Step 7: Report Storage 💾\n\nSaves generated reports to Google Drive for team access.\n\n## Storage Features\n- **Organized Folders**: ESG_Reports directory\n- **Version Control**: Date-stamped files\n- **Team Access**: Shared drive integration\n- **Format**: Markdown for easy reading\n\n## File Management\n- Automatic folder creation\n- Standardized naming convention\n- Historical report retention\n- Easy sharing and collaboration"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "carbon-footprint-v1-2025-001",
  "connections": {
    "a1b2c3d4-e5f6-7890-abcd-ef1234567890": {
      "main": [
        [
          {
            "node": "b2c3d4e5-f6g7-8901-bcde-f23456789012",
            "type": "main",
            "index": 0
          },
          {
            "node": "c3d4e5f6-g7h8-9012-cdef-345678901234",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "b2c3d4e5-f6g7-8901-bcde-f23456789012": {
      "main": [
        [
          {
            "node": "d4e5f6g7-h8i9-0123-defg-456789012345",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "g7h8i9j0-k1l2-3456-ghij-789012345678": {
      "main": [
        [
          {
            "node": "h8i9j0k1-l2m3-4567-hijk-890123456789",
            "type": "main",
            "index": 0
          },
          {
            "node": "i9j0k1l2-m3n4-5678-ijkl-901234567890",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "d4e5f6g7-h8i9-0123-defg-456789012345": {
      "main": [
        [
          {
            "node": "e5f6g7h8-i9j0-1234-efgh-567890123456",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "i9j0k1l2-m3n4-5678-ijkl-901234567890": {
      "main": [
        []
      ]
    },
    "h8i9j0k1-l2m3-4567-hijk-890123456789": {
      "main": [
        [
          {
            "node": "i9j0k1l2-m3n4-5678-ijkl-901234567890",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c3d4e5f6-g7h8-9012-cdef-345678901234": {
      "main": [
        [
          {
            "node": "d4e5f6g7-h8i9-0123-defg-456789012345",
            "type": "main",
            "index": 1
          }
        ]
      ]
    },
    "f6g7h8i9-j0k1-2345-fghi-678901234567": {
      "main": [
        [
          {
            "node": "g7h8i9j0-k1l2-3456-ghij-789012345678",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "e5f6g7h8-i9j0-1234-efgh-567890123456": {
      "main": [
        [
          {
            "node": "f6g7h8i9-j0k1-2345-fghi-678901234567",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Preguntas frecuentes

¿Cómo usar este flujo de trabajo?

Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.

¿En qué escenarios es adecuado este flujo de trabajo?

Avanzado - Extracción de documentos, Resumen de IA

¿Es de pago?

Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.

Flujos de trabajo relacionados recomendados

Información del flujo de trabajo
Nivel de dificultad
Avanzado
Número de nodos16
Categoría2
Tipos de nodos5
Descripción de la dificultad

Adecuado para usuarios avanzados, flujos de trabajo complejos con 16+ nodos

Enlaces externos
Ver en n8n.io

Compartir este flujo de trabajo

Categorías

Categorías: 34