Mi flujo de trabajo 3

Avanzado

Este es unHR, AI Summarization, Multimodal AIflujo de automatización del dominio deautomatización que contiene 23 nodos.Utiliza principalmente nodos como Set, Code, Merge, Airtable, FormTrigger. Filtrado y puntuación automatizados de currículums usando IA, Gmail, GoogleDrive y Airtable

Requisitos previos
  • Clave de API de Airtable
  • Credenciales de API de Google Drive
  • Cuenta de Google y credenciales de API de Gmail
  • Credenciales de API de Google Sheets
Vista previa del flujo de trabajo
Visualización de las conexiones entre nodos, con soporte para zoom y panorámica
Exportar flujo de trabajo
Copie la siguiente configuración JSON en n8n para importar y usar este flujo de trabajo
{
  "id": "7S4ihndpWguEUgPR",
  "meta": {
    "instanceId": "b2b5a36da7eac7de99012b5a90e67cd124f5c20d9168d5fb4eef7aa2b75f2f80",
    "templateCredsSetupCompleted": true
  },
  "name": "My workflow 3",
  "tags": [],
  "nodes": [
    {
      "id": "14df0331-5d44-471e-a60b-9931f108764c",
      "name": "Gmail Trigger",
      "type": "n8n-nodes-base.gmailTrigger",
      "position": [
        -128,
        64
      ],
      "parameters": {
        "simple": false,
        "filters": {
          "q": "Senior Software Engineer"
        },
        "options": {
          "downloadAttachments": true,
          "dataPropertyAttachmentsPrefixName": "CV"
        },
        "pollTimes": {
          "item": [
            {
              "mode": "everyMinute"
            }
          ]
        }
      },
      "credentials": {
        "gmailOAuth2": {
          "id": "8jLBWmrnkH59W1tP",
          "name": "Gmail account"
        }
      },
      "typeVersion": 1.3
    },
    {
      "id": "6c3f54bf-26d8-4863-b91c-d6760b54bfc4",
      "name": "Subir archivo",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        144,
        -48
      ],
      "parameters": {
        "name": "={{ $json.from.value[0].name }}",
        "driveId": {
          "__rl": true,
          "mode": "list",
          "value": "My Drive"
        },
        "options": {},
        "folderId": {
          "__rl": true,
          "mode": "list",
          "value": "13yu3QH6GO5Kx0HbEkwXPiceBH1yDVzTO",
          "cachedResultUrl": "https://drive.google.com/drive/folders/13yu3QH6GO5Kx0HbEkwXPiceBH1yDVzTO",
          "cachedResultName": "Software Engineer Resume"
        },
        "inputDataFieldName": "CV0"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "WV2QCnuShiBUUxQX",
          "name": "Google Drive account"
        }
      },
      "typeVersion": 3
    },
    {
      "id": "8b8fb671-bd8d-42cc-8a21-1a518eb8c42b",
      "name": "Descargar archivo",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        368,
        -48
      ],
      "parameters": {
        "fileId": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $json.id }}"
        },
        "options": {},
        "operation": "download"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "WV2QCnuShiBUUxQX",
          "name": "Google Drive account"
        }
      },
      "typeVersion": 3
    },
    {
      "id": "436d2b81-56a7-4cca-a4f3-73fa174ef3d5",
      "name": "Extraer de archivo",
      "type": "n8n-nodes-base.extractFromFile",
      "position": [
        592,
        -48
      ],
      "parameters": {
        "options": {},
        "operation": "pdf"
      },
      "typeVersion": 1
    },
    {
      "id": "659a2bfe-607c-46f4-a8c0-748f900dac7d",
      "name": "Extractor de información",
      "type": "@n8n/n8n-nodes-langchain.informationExtractor",
      "position": [
        976,
        -224
      ],
      "parameters": {
        "text": "={{ $json.text }}",
        "options": {},
        "schemaType": "manual",
        "inputSchema": "={\n\t\"type\": \"object\",\n\t\"properties\": {\n    \t\"candidate_name\": {\n\t\t\"type\": \"string\"\n\t},\n    \"email_address\": {\n\t\t\"type\": \"string\",\n\t\t\"format\": \"email\"\n    },\n    \"contact_number\": {\n      \"type\": \"string\",\n      \"pattern\": \"^(\\\\+\\\\d{1,3}[- ]?)?\\\\d{10}$\"\n    }\n  }\n}\n"
      },
      "typeVersion": 1.2
    },
    {
      "id": "88b31b2a-4e61-485f-a472-d689b198ac9e",
      "name": "OpenRouter Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
      "position": [
        976,
        -32
      ],
      "parameters": {
        "model": "openai/gpt-oss-20b:free",
        "options": {}
      },
      "credentials": {
        "openRouterApi": {
          "id": "ONkqc0B0l2xlY8Mu",
          "name": "OpenRouter account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "6476ff9c-5460-48d2-9dee-b7109692c87c",
      "name": "Agente de IA",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        960,
        112
      ],
      "parameters": {
        "text": "=CV:\n{{ $json.text }}",
        "options": {
          "systemMessage": "=YOU ARE THE WORLD'S MOST ACCURATE AND EFFICIENT CV SUMMARIZER, KNOWN FOR PRODUCING CONCISE AND INFORMATIVE SUMMARIES THAT CAPTURE ALL ESSENTIAL DETAILS.\nYOUR TASK IS TO SUMMARIZE A PROVIDED CV INTO THREE CLEAR SECTIONS: EDUCATIONAL QUALIFICATIONS, JOBN HISTORY, AND SKILL SET. IN ADDITION, YOU MUST EVALUATE THE CANDIDATE'S SUITABILITY FOR A SPECIFIED JOB ROLE AND ASSIGN A SCORE FROM 1 TO 10 BASED ON HOW WELL THEIR QUALIFICATIONS MATCH THE ROLE.\n\nINSTRUCTIONS\n1. EXTRACT AND SUMMARIZE INFORMATION FROM THE CV:\nEDUCATIONAL QUALIFICATIONS: INCLUDE DEGREE NAMES, INSTITUTIONS, AND GRADUATION YEARS.\nJOB HISTORY: LIS JOB TITLES, COMPANIES, AND EMPLOYMENT DATES, WITH A BRIEF OVERVIEW OF KEY RESPONSIBILITIES OR ACHIEVEMENTS.\nSKILL SET: COMPLETE RELEVANT TECHNICAL, SOFT, AND INDUSTRY-SPECIFIC SKILLS.\n\n2. EVALUATE THE CANDIDATE BASED ON THE PROVIDED JOB POST:\nANALYZE RELEVANCE: Compare the candidate's education, work experience, and skill set with the provided job post.\nASSIGN A SCORE (1-10):\n1-3: Weak match (lacks key qualifications or experience).\n4-6: Moderate match (some relevant qalifications but gaps exists).\n7-8: Strong match (meets most job criteria with relevant experience).\n9-10: Excellent match (perfect fit exceeding expectations).\n\nPROVIDE A BRIEF JUSTIFICATION for the assigned score, highlighting key strengths or missing qualifications.\n\n3. OUTPUT FORMAT:\nEducational Qualifications\n\n[Degree], [Institution], [Year]\nJob History\n\n[Job Title], [Company], [Dates]: [Key responsibilities or Achievements]\nSkill Ste\n\n[Skill 1], [Skill 2], [Skill 3], [Skill 4], etc.\nCandidates Evaluation\n\nScore: [1-10]\nJustification: [Brief explanation of why the candidate received this score]\nWHAT TO DO\nDO NOT INCLUDE PERSONAL INFORMATION such as contact details or addresses.\nDO NOT OMIT RELEVANT EDUCATION, JOB, OR SKILL INFORMATION.\nDO NOT ADD YOUR OWN INTERPRETATION OR ASSUMPTIONS ABOUT THE CV CONTENT.\nDO NOT USE INFORMAL LANGUAGE OR EXCESSIVE DETAIL.\nEXAMPLE OUTPUT:\nEducational Qualifications\n\nBachelor of Science in Computer Science, University of Karachi, 2020.\nJob History\n\nSoftware Engineer, Techcorp, 2021-2025: Developed Scalable web applications and optimized database performance.\nSkill Set\n\nPython, Javascript, React, ReactNative, n8n, Zapier, AI, LLM, Team Leadership, Agile Development.\nCandidate Evaluation\n\nScore: 8/10\nJustification: The candidate has a relevant degree, strong technical skills, and 12 years of industry experience. However, lacks experience with cloud technologies mentioned in the job description.\n\nJob Post:\nWe’re seeking a talented and driven Full-Stack Developer with solid experience in Next.js, SAAS Development, Supabase etc. to join our growing team. In this role, you will be instrumental in building and maintaining scalable, high-performance web applications and backend systems.\n\nKey Responsibilities:\n•\tDevelop and scale web applications using Next.js.\n•\tBuild backend infrastructure using Supabase (database, authentication, storage, etc.).\n•\tCollaborate with cross-functional teams in a SaaS product environment.\n•\tIntegrate AI tools and workflows to enhance development efficiency and innovation.\n•\tWrite optimized, maintainable SQL queries and design robust data structures.\n•\tAnalyze and work with existing codebases to extend features or resolve issues.\n•\tEnsure system performance, stability, and security through best practices.\n\nIdeal Candidate should have:\n•\t3+ years of professional development experience.\n•\tA Bachelors in Computer Science, Engineering, Information Technology, or a relevant Field.\n•\tStrong proficiency in Next.js and Supabase.\n•\tDemonstrated experience in SaaS application development.\n•\tAbility to read and work with existing codebases.\n•\tGood understanding of authentication, authorization, and middleware.\n•\tProficiency in SQL, database schema design, and performance tuning.\n•\tActively incorporates AI tools (like Copilot, ChatGPT, etc.) into development processes.\n•\tAbility to work independently and collaboratively in a fast-paced environment.\n\nWhat we Offer:\n•\tCompetitive compensation\n•\tOpportunity to work on innovative, AI-powered tools and services\n•\tCollaborative, fast-paced, and growth-focused environment\nInterested candidates can share the Resume to baluntechsol@gmail.com with the Position mentioned in the Subject line.\n\nIf you are interested, please feel free to DM me or email your Resume to baluntechsol@gmail.com with the Position mentioned in the Subject line."
        },
        "promptType": "define"
      },
      "typeVersion": 2.2
    },
    {
      "id": "930d6fcb-bcb5-4179-b8d2-00037be73b1a",
      "name": "OpenRouter Chat Model1",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
      "position": [
        960,
        352
      ],
      "parameters": {
        "model": "openai/gpt-oss-20b:free",
        "options": {}
      },
      "credentials": {
        "openRouterApi": {
          "id": "ONkqc0B0l2xlY8Mu",
          "name": "OpenRouter account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "ff7b1234-947b-45d8-9693-c2d9a3c82fa6",
      "name": "Editar campos",
      "type": "n8n-nodes-base.set",
      "position": [
        1344,
        128
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "c186b601-19ce-4a98-8097-6f9e1d0f1a9e",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "f0274105-2a9e-490f-af57-73efb0c7d366",
      "name": "Código",
      "type": "n8n-nodes-base.code",
      "position": [
        1568,
        128
      ],
      "parameters": {
        "jsCode": "// Read raw text from previous node\nconst data = items[0].json;\nconst rawText = String(\n  data.output ||\n  data.outputText ||\n  data.Output ||\n  data.summary ||\n  data.result ||\n  \"\"\n);\n\nif (!rawText) {\n  return [{\n    json: {\n      error: \"No input text found in previous node (tried output / outputText / Output / summary / result).\"\n    }\n  }];\n}\n\n// Helper: extract section\nfunction extractSection(text, sectionName) {\n  if (!text) return \"\";\n  const nameEsc = sectionName.replace(/[.*+?^${}()|[\\]\\\\]/g, \"\\\\$&\");\n\n  // 1) Bold markdown header: **Section Name**\n  let regex = new RegExp(`\\\\*\\\\*\\\\s*${nameEsc}\\\\s*\\\\*\\\\*[\\\\r\\\\n]+([\\\\s\\\\S]*?)(?=\\\\n\\\\*\\\\*|\\\\n---|$)`, \"i\");\n  let m = text.match(regex);\n  if (m) return m[1].trim();\n\n  // 2) Plain header line\n  regex = new RegExp(`^\\\\s*${nameEsc}\\\\s*$[\\\\r\\\\n]+([\\\\s\\\\S]*?)(?=^\\\\s*\\\\*\\\\*|\\\\n---|$)`, \"im\");\n  m = text.match(regex);\n  if (m) return m[1].trim();\n\n  // 3) Fallback: find the name anywhere\n  regex = new RegExp(nameEsc, \"i\");\n  m = text.match(regex);\n  if (m) {\n    const start = m.index + m[0].length;\n    const rest = text.slice(start);\n    const nextBoundary = rest.search(/\\n\\*\\*|\\n---/i);\n    const end = nextBoundary !== -1 ? start + nextBoundary : text.length;\n    return text.slice(start, end).trim();\n  }\n\n  return \"\";\n}\n\n// Extract score + justification\nfunction extractScoreAndJustification(block) {\n  if (!block) return [\"\", \"\"];\n  const sanitized = block.replace(/\\*/g, \"\").trim();\n\n  let score = \"\";\n  let justification = \"\";\n\n  const scoreMatch = sanitized.match(/Score\\s*[:\\-–—]?\\s*([0-9]{1,2}(?:\\/10)?|N\\/A|NA|n\\/a)/i);\n  if (scoreMatch) {\n    score = scoreMatch[1].trim();\n    if (/^[0-9]{1,2}$/.test(score)) {\n      const n = parseInt(score, 10);\n      if (n >= 0 && n <= 10) score = `${n}/10`;\n    }\n  }\n\n  const justMatch = sanitized.match(/Justification\\s*[:\\-–—]?\\s*([\\s\\S]*)/i);\n  if (justMatch) {\n    justification = justMatch[1].trim();\n  }\n\n  if (!score && sanitized) score = \"N/A\";\n  return [score, justification];\n}\n\n// Extract sections\nconst educationalQualification = extractSection(rawText, \"Educational Qualifications\");\nconst jobHistory = extractSection(rawText, \"Job History\");\nconst skillSet = extractSection(rawText, \"Skill Set\");\nconst candidateEvaluation = extractSection(rawText, \"Candidate Evaluation\");\n\n// Get score + justification\nconst [score, justification] = extractScoreAndJustification(candidateEvaluation);\n\nreturn [{\n  json: {\n    educationalQualification: educationalQualification || \"\",\n    jobHistory: jobHistory || \"\",\n    skillSet: skillSet || \"\",\n    score: score || \"\",\n    justification: justification || \"\"\n  }\n}];\n"
      },
      "typeVersion": 2
    },
    {
      "id": "49e498a3-c87b-4d79-9a59-6947324dcb9a",
      "name": "Combinar",
      "type": "n8n-nodes-base.merge",
      "position": [
        1808,
        -48
      ],
      "parameters": {
        "mode": "combine",
        "options": {},
        "combineBy": "combineAll"
      },
      "typeVersion": 3.2
    },
    {
      "id": "607b4f93-7b37-4293-8844-fd17ded34785",
      "name": "Añadir fila en hoja",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        2064,
        -208
      ],
      "parameters": {
        "columns": {
          "value": {
            "score": "={{ $json.score }}",
            "skill set": "={{ $json.skillSet }}",
            "Job History": "={{ $json.jobHistory }}",
            "Justification": "={{ $json.justification }}",
            "email_address": "={{ $json.output.email_address }}",
            "candidate_name": "={{ $json.output.candidate_name }}",
            "contact_number": "={{ $json.output.contact_number }}",
            "Educational Qualifications": "={{ $json.educationalQualification }}"
          },
          "schema": [
            {
              "id": "candidate_name",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "candidate_name",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "email_address",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "email_address",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "contact_number",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "contact_number",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Educational Qualifications",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Educational Qualifications",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Job History",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Job History",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "skill set",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "skill set",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "score",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "score",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Justification",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Justification",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "defineBelow",
          "matchingColumns": [],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        },
        "options": {},
        "operation": "append",
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": "gid=0",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/12pqhk8m-j2V44jKaNZwG7jKFPUpm4yCe17mHjbr6qUQ/edit#gid=0",
          "cachedResultName": "Sheet1"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "12pqhk8m-j2V44jKaNZwG7jKFPUpm4yCe17mHjbr6qUQ",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/12pqhk8m-j2V44jKaNZwG7jKFPUpm4yCe17mHjbr6qUQ/edit?usp=drivesdk",
          "cachedResultName": "HR_Automation_Workflow"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "ObgvVgjWJYaH5iLJ",
          "name": "Google Sheets account"
        }
      },
      "typeVersion": 4.7
    },
    {
      "id": "e9ad17fd-e688-4c34-80ce-a79dc572b794",
      "name": "Crear registro",
      "type": "n8n-nodes-base.airtable",
      "position": [
        2064,
        64
      ],
      "parameters": {
        "base": {
          "__rl": true,
          "mode": "list",
          "value": "appAN9KciZeolO2PN",
          "cachedResultUrl": "https://airtable.com/appAN9KciZeolO2PN",
          "cachedResultName": "Senior_Software_Engineer_Resume"
        },
        "table": {
          "__rl": true,
          "mode": "list",
          "value": "tblgro31x2ktE3aEc",
          "cachedResultUrl": "https://airtable.com/appAN9KciZeolO2PN/tblgro31x2ktE3aEc",
          "cachedResultName": "Table 1"
        },
        "columns": {
          "value": {
            "Score": "={{ $json.score }}",
            "Skill set": "={{ $json.skillSet }}",
            "Job History": "={{ $json.jobHistory }}",
            "Justification": "={{ $json.justification }}",
            "email_address": "={{ $json.output.email_address }}",
            "candidate_name": "={{ $json.output.candidate_name }}",
            "contact_number": "={{ $json.output.contact_number }}",
            "Educational Qualifications": "={{ $json.educationalQualification }}"
          },
          "schema": [
            {
              "id": "id",
              "type": "string",
              "display": true,
              "removed": false,
              "readOnly": true,
              "required": false,
              "displayName": "id",
              "defaultMatch": true
            },
            {
              "id": "candidate_name",
              "type": "string",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "candidate_name",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "email_address",
              "type": "string",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "email_address",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "contact_number",
              "type": "string",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "contact_number",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Educational Qualifications",
              "type": "string",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "Educational Qualifications",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Job History",
              "type": "string",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "Job History",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Skill set",
              "type": "string",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "Skill set",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Score",
              "type": "number",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "Score",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Justification",
              "type": "string",
              "display": true,
              "removed": false,
              "readOnly": false,
              "required": false,
              "displayName": "Justification",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "defineBelow",
          "matchingColumns": [
            "id"
          ],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        },
        "options": {},
        "operation": "create"
      },
      "credentials": {
        "airtableTokenApi": {
          "id": "jgRMszk4kSwSaU3V",
          "name": "Airtable Personal Access Token account"
        }
      },
      "typeVersion": 2.1
    },
    {
      "id": "04901267-ea47-4280-9e19-3e88c9fc7993",
      "name": "Al enviar formulario",
      "type": "n8n-nodes-base.formTrigger",
      "position": [
        -128,
        -144
      ],
      "webhookId": "12378e65-adc8-4ca3-9ef6-95cd5d2a412b",
      "parameters": {
        "options": {},
        "formTitle": "Senior Software Engineer"
      },
      "typeVersion": 2.3
    },
    {
      "id": "34eb4149-0501-4d6d-8dc6-f19a59385d58",
      "name": "Nota adhesiva",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -192,
        -416
      ],
      "parameters": {
        "color": 4,
        "height": 912,
        "content": "GMAIL TRIGGER:\nListen from emails or forms submissions matching the CV's received for specific job position and fetch attachments."
      },
      "typeVersion": 1
    },
    {
      "id": "22690685-9e05-4c1b-a798-bd2646e5214d",
      "name": "Nota adhesiva1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        64,
        -416
      ],
      "parameters": {
        "height": 912,
        "content": "UPLOAD THE FILE:\nIncoming attachment (CV) is uploaded to the configured Google Drive folder and named from the sender."
      },
      "typeVersion": 1
    },
    {
      "id": "73d68e7c-705c-49e0-a2af-8bea13a69091",
      "name": "Nota adhesiva2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        320,
        -416
      ],
      "parameters": {
        "color": 3,
        "width": 192,
        "height": 912,
        "content": "DOWNLOAD THE ATTACHMENT (CV):\nThe stored file is downloaded by ID so it can be read."
      },
      "typeVersion": 1
    },
    {
      "id": "55a5c9bd-9602-4875-aae5-d4497e06b067",
      "name": "Nota adhesiva3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        528,
        -416
      ],
      "parameters": {
        "color": 7,
        "height": 912,
        "content": "EXTRACT FROM FILE:\nExtract from File converts the CV (PDF) into plain text."
      },
      "typeVersion": 1
    },
    {
      "id": "05bd2380-4208-4f0e-95be-9f0c0c542721",
      "name": "Nota adhesiva4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        864,
        -416
      ],
      "parameters": {
        "color": 5,
        "width": 384,
        "height": 912,
        "content": "Two parallel AI paths:\n\nQuick structured extraction: Information Extractor uses a small schema (name, email, phone) + LM helper to pull contact fields.\n\nFull CV analysis: AI Agent runs a large system prompt to summarize Education, Job History, Skills and to assign a suitability score (1–10)."
      },
      "typeVersion": 1
    },
    {
      "id": "fdce16c8-1138-4bb6-9925-efe4357a9f80",
      "name": "Nota adhesiva5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1264,
        -416
      ],
      "parameters": {
        "color": 2,
        "height": 912,
        "content": "Normalize agent output: Edit Fields maps the agent response into output."
      },
      "typeVersion": 1
    },
    {
      "id": "9dd5f08c-6528-4650-b411-5e645413ce6e",
      "name": "Nota adhesiva6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1520,
        -416
      ],
      "parameters": {
        "width": 208,
        "height": 912,
        "content": "Parse & clean: \nCode runs JS to extract the three summary sections plus score and justification from the agent text (regex-based)."
      },
      "typeVersion": 1
    },
    {
      "id": "90db96b2-a8b0-44a4-8f75-05552c5c1ee1",
      "name": "Nota adhesiva7",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1744,
        -416
      ],
      "parameters": {
        "color": 4,
        "width": 208,
        "height": 912,
        "content": "Merge datasets: \nMerge combines the schema extraction (contact info) with the AI-parsed summary/score."
      },
      "typeVersion": 1
    },
    {
      "id": "d699e192-b79d-4283-b531-59ff75313ffc",
      "name": "Nota adhesiva8",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1968,
        -416
      ],
      "parameters": {
        "color": 6,
        "width": 272,
        "height": 912,
        "content": "Store results: \nFinal record is appended to Google Sheets and inserted into Airtable for tracking, reporting, or downstream workflows."
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "6658e34c-6f2c-418e-84fd-271309c8fcbb",
  "connections": {
    "f0274105-2a9e-490f-af57-73efb0c7d366": {
      "main": [
        [
          {
            "node": "49e498a3-c87b-4d79-9a59-6947324dcb9a",
            "type": "main",
            "index": 1
          }
        ]
      ]
    },
    "49e498a3-c87b-4d79-9a59-6947324dcb9a": {
      "main": [
        [
          {
            "node": "607b4f93-7b37-4293-8844-fd17ded34785",
            "type": "main",
            "index": 0
          },
          {
            "node": "e9ad17fd-e688-4c34-80ce-a79dc572b794",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "6476ff9c-5460-48d2-9dee-b7109692c87c": {
      "main": [
        [
          {
            "node": "ff7b1234-947b-45d8-9693-c2d9a3c82fa6",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "ff7b1234-947b-45d8-9693-c2d9a3c82fa6": {
      "main": [
        [
          {
            "node": "f0274105-2a9e-490f-af57-73efb0c7d366",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "6c3f54bf-26d8-4863-b91c-d6760b54bfc4": {
      "main": [
        [
          {
            "node": "8b8fb671-bd8d-42cc-8a21-1a518eb8c42b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "8b8fb671-bd8d-42cc-8a21-1a518eb8c42b": {
      "main": [
        [
          {
            "node": "436d2b81-56a7-4cca-a4f3-73fa174ef3d5",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "14df0331-5d44-471e-a60b-9931f108764c": {
      "main": [
        [
          {
            "node": "6c3f54bf-26d8-4863-b91c-d6760b54bfc4",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "436d2b81-56a7-4cca-a4f3-73fa174ef3d5": {
      "main": [
        [
          {
            "node": "659a2bfe-607c-46f4-a8c0-748f900dac7d",
            "type": "main",
            "index": 0
          },
          {
            "node": "6476ff9c-5460-48d2-9dee-b7109692c87c",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "04901267-ea47-4280-9e19-3e88c9fc7993": {
      "main": [
        [
          {
            "node": "6c3f54bf-26d8-4863-b91c-d6760b54bfc4",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "659a2bfe-607c-46f4-a8c0-748f900dac7d": {
      "main": [
        [
          {
            "node": "49e498a3-c87b-4d79-9a59-6947324dcb9a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "88b31b2a-4e61-485f-a472-d689b198ac9e": {
      "ai_languageModel": [
        [
          {
            "node": "659a2bfe-607c-46f4-a8c0-748f900dac7d",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "930d6fcb-bcb5-4179-b8d2-00037be73b1a": {
      "ai_languageModel": [
        [
          {
            "node": "6476ff9c-5460-48d2-9dee-b7109692c87c",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    }
  }
}
Preguntas frecuentes

¿Cómo usar este flujo de trabajo?

Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.

¿En qué escenarios es adecuado este flujo de trabajo?

Avanzado - Recursos Humanos, Resumen de IA, IA Multimodal

¿Es de pago?

Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.

Flujos de trabajo relacionados recomendados

Asistente de entrevistas inteligentes: Preguntas personalizadas basadas en CV, descripción del puesto y rondas
Usar GPT-4 para generar preguntas de entrevista personalizadas basadas en currículum, descripción del puesto y ronda de entrevista
Set
Code
Merge
+
Set
Code
Merge
26 NodosTrung Tran
Recursos Humanos
第一轮 Telegram y LinkedIn 快速通道 AI 招聘asistente
AI候选人筛选流程:LinkedInaTelegram,integraciónGemini与Apify
If
Set
Code
+
If
Set
Code
55 NodosDean Pike
Recursos Humanos
Selección de CVs basada en comparación
Automatización de cribado de CVs y puntuación de candidatos con Gemini AI y Google Sheets
Code
Merge
Form Trigger
+
Code
Merge
Form Trigger
27 NodosAsfandyar Malik
Recursos Humanos
TalentFlow AI - Selección masiva de currículums y emparejamiento con descripciones de puestos
cribado masivo de CVs y emparejamiento con descripciones de trabajos para el equipo de HR utilizando GPT-4
If
Code
Merge
+
If
Code
Merge
30 NodosTrung Tran
Recursos Humanos
Automatización de creación de contenido viral con OpenAI, ElevenLabs y Fal.ai para videos, podcasts y ASMR
Automatizar la creación de contenido viral para video, podcasts y ASMR con OpenAI, ElevenLabs y Fal.ai
Set
Code
Wait
+
Set
Code
Wait
97 NodosAdam Crafts
Creación de contenido
Filtrado automatizado de currículos con GPT-4o y manejo de errores - Proceso de Google Sheets y Google Drive
Filtrado automatizado de currículums con GPT-4o y manejo de errores: proceso de Google Sheets y Drive
If
Set
Gmail
+
If
Set
Gmail
34 NodosDavid Olusola
Creación de contenido
Información del flujo de trabajo
Nivel de dificultad
Avanzado
Número de nodos23
Categoría3
Tipos de nodos13
Descripción de la dificultad

Adecuado para usuarios avanzados, flujos de trabajo complejos con 16+ nodos

Enlaces externos
Ver en n8n.io

Compartir este flujo de trabajo

Categorías

Categorías: 34