Comparación de modelos de IA mediante API de Nvidia: Qwen, DeepSeek, Seed-OSS y Nemotron
Este es unautomatización que contiene 11 nodos.Utiliza principalmente nodos como Set, Merge, Switch, Webhook, HttpRequest. Comparación de modelos de IA usando la API de Nvidia: Qwen, DeepSeek, Seed-OSS y Nemotron
- •Punto final de HTTP Webhook (n8n generará automáticamente)
- •Pueden requerirse credenciales de autenticación para la API de destino
Nodos utilizados (11)
Categoría
{
"id": "vwBMikFazJ8dTN7C",
"meta": {
"instanceId": "b91e510ebae4127f953fd2f5f8d40d58ca1e71c746d4500c12ae86aad04c1502",
"templateCredsSetupCompleted": true
},
"name": "Compare AI Models with Nvidia API: Qwen, DeepSeek, Seed-OSS & Nemotron",
"tags": [],
"nodes": [
{
"id": "2fd77eab-0817-4d39-a206-4506b5373765",
"name": "Disparador Webhook Trigger",
"type": "n8n-nodes-base.webhook",
"position": [
-144,
-528
],
"webhookId": "6737b4b1-3c2f-47b9-89ff-a012c1fa4f29",
"parameters": {
"path": "6737b4b1-3c2f-47b9-89ff-a012c1fa4f29",
"options": {},
"httpMethod": "POST",
"responseMode": "responseNode"
},
"typeVersion": 2.1
},
{
"id": "1f78059c-f7a8-493c-886e-05047d83a7b4",
"name": "Nota adhesiva",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1072,
-848
],
"parameters": {
"width": 864,
"height": 944,
"content": "# Compare AI Models with Nvidia API: Qwen, DeepSeek, Seed-OSS & Nemotron\n\n## Overview\n- Queries four AI models simultaneously via Nvidia's API in 2-3 seconds—4x faster than sequential processing. Perfect for ensemble intelligence, model comparison, or redundancy.\n\n\n## How It Works\n- Webhook Trigger receives queries\n- AI Router distributes to four parallel branches: Qwen2, SyncGenInstruct, DeepSeek-v3.1, and Nvidia Nemotron\n- Merge Node aggregates responses (continues with partial results on timeout)\n- Format Response structures output\n- Webhook Response returns JSON with all model outputs\n\n## Prerequisites\n\n- Nvidia API key from [build.nvidia.com](https://build.nvidia.com) (free tier available)\n- n8n v1.0.0+ with HTTP access\n- Model access in Nvidia dashboard\n\n## Setup\n\n1. Import workflow JSON\n2. Configure HTTP nodes: Authentication → Header Auth → `Authorization: Bearer YOUR_TOKEN_HERE`\n3. Activate workflow and test\n\n## Customization\n\nAdjust temperature/max_tokens in HTTP nodes, add/remove models by duplicating nodes, change primary response selection in Format node, or add Redis caching for frequent queries.\n\n## Use Cases\n\nMulti-model chatbots, A/B testing, code review, research assistance, and production systems with AI fallback.\n"
},
"typeVersion": 1
},
{
"id": "e7f74b77-470b-49e4-a191-577afda45296",
"name": "Nota adhesiva 4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-192,
-848
],
"parameters": {
"color": 3,
"width": 1312,
"height": 784,
"content": ""
},
"typeVersion": 1
},
{
"id": "8a0ca7d2-f4c0-4a95-9a7a-63c9d40ef77e",
"name": "Formatear respuesta",
"type": "n8n-nodes-base.set",
"position": [
720,
-544
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "bbfd9a05-0e6c-44cf-80e2-2a79ecb3f67a",
"name": "choices[0].message.content",
"type": "string",
"value": "={{ $json.choices[0].message.content }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "20e9c15e-cd3d-4624-8620-5e100081bab1",
"name": "Enviar respuestas agregadas de modelos de IA",
"type": "n8n-nodes-base.respondToWebhook",
"position": [
944,
-544
],
"parameters": {
"options": {}
},
"typeVersion": 1.4
},
{
"id": "0b86c542-74ce-4456-b025-07025e6f57a7",
"name": "Fusionar modelo de IA",
"type": "n8n-nodes-base.merge",
"position": [
528,
-576
],
"parameters": {
"numberInputs": 4
},
"typeVersion": 3.2
},
{
"id": "556f837e-5958-4121-9142-f3a05b560190",
"name": "Enrutador de modelos de IA",
"type": "n8n-nodes-base.switch",
"position": [
80,
-576
],
"parameters": {
"rules": {
"values": [
{
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "8c79834b-efde-4096-8a97-687dbaac1eaa",
"operator": {
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json['AI Model'] }}",
"rightValue": "1"
}
]
}
},
{
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "6f423cc4-08e3-41aa-8c5a-40a2d37a248d",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json['AI Model'] }}",
"rightValue": "2"
}
]
}
},
{
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "b8ba2c94-78d3-4325-8dda-e139d2dad24d",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json['AI Model'] }}",
"rightValue": "3"
}
]
}
},
{
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "0d1a15d3-047f-4489-896e-af2c079de4ae",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json['AI Model'] }}",
"rightValue": "4"
}
]
}
},
{
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "634191cd-73c9-4335-987b-93e07ba7ab0f",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json['AI Model'] }}",
"rightValue": "5"
}
]
}
}
]
},
"options": {}
},
"typeVersion": 3.2
},
{
"id": "38a42944-835b-422c-b872-b20c8f899210",
"name": "Consultar Qwen3-next-80b-a3b-thinking (Alibaba)",
"type": "n8n-nodes-base.httpRequest",
"position": [
304,
-832
],
"parameters": {
"url": "https://integrate.api.nvidia.com/v1/chat/completions",
"method": "POST",
"options": {},
"jsonBody": "={\n \"model\": \"qwen/qwen3-next-80b-a3b-thinking\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"{{ $('On form submission').item.json['Insert your Query'] }}\"\n }\n ],\n \"temperature\": 0.7,\n \"max_tokens\": 1024\n} ",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"headerParameters": {
"parameters": [
{
"name": "accept",
"value": "application/json"
}
]
}
},
"credentials": {
"httpBearerAuth": {
"id": "AM38cMMgmt5pCa3J",
"name": "Bearer YOUR_TOKEN_HERE"
}
},
"typeVersion": 4.2
},
{
"id": "0d948f27-f325-4776-88f5-17993c22f382",
"name": "Consultar Bytedance/seed-oss-36b-instruct (Bytedance)",
"type": "n8n-nodes-base.httpRequest",
"position": [
304,
-640
],
"parameters": {
"url": "https://integrate.api.nvidia.com/v1/chat/completions",
"method": "POST",
"options": {},
"jsonBody": "={\n \"model\": \"bytedance/seed-oss-36b-instruct\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"{{ $json['Insert your Query'] }}\"\n }\n ],\n \"temperature\": 1.1,\n \"top_p\": 0.95,\n \"max_tokens\": 4096,\n \"thinking_budget\": -1,\n \"frequency_penalty\": 0,\n \"presence_penalty\": 0,\n \"stream\": false\n}",
"sendBody": true,
"specifyBody": "json",
"authentication": "genericCredentialType"
},
"credentials": {
"httpBearerAuth": {
"id": "81rXxn13x9fyoYSK",
"name": "Bearer YOUR_TOKEN_HERE Nvidia_bytedance/seed-oss-36b-instruct"
}
},
"typeVersion": 4.2
},
{
"id": "8fb1c1df-6544-4275-af67-c7f85b9fed92",
"name": "Consultar Nvidia-nemotron-nano-9b-v2 (Nvidia)",
"type": "n8n-nodes-base.httpRequest",
"position": [
304,
-256
],
"parameters": {
"url": "https://integrate.api.nvidia.com/v1/chat/completions",
"method": "POST",
"options": {},
"jsonBody": "{\n \"model\": \"nvidia/nvidia-nemotron-nano-9b-v2\",\n \"messages\": [\n {\n \"role\": \"system\",\n \"content\": \"/think\"\n }\n ],\n \"temperature\": 0.6,\n \"top_p\": 0.95,\n \"max_tokens\": 2048,\n \"min_thinking_tokens\": 1024,\n \"max_thinking_tokens\": 2048,\n \"frequency_penalty\": 0,\n \"presence_penalty\": 0,\n \"stream\": true\n}",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"headerParameters": {
"parameters": [
{}
]
}
},
"credentials": {
"httpBearerAuth": {
"id": "De0YbIT8HKmoZ2QW",
"name": "Bearer YOUR_TOKEN_HERE"
}
},
"typeVersion": 4.2
},
{
"id": "d0e9668b-1c75-4e41-90ec-684abeae0d49",
"name": "Consultar DeepSeekv3_1",
"type": "n8n-nodes-base.httpRequest",
"position": [
304,
-432
],
"parameters": {
"url": "https://integrate.api.nvidia.com/v1/chat/completions",
"method": "POST",
"options": {},
"jsonBody": "={\n \"model\": \"deepseek-ai/deepseek-r1\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"{{ $('On form submission').item.json['Insert your Query'] }}\"\n }\n ],\n \"temperature\": 0.6,\n \"top_p\": 0.7,\n \"frequency_penalty\": 0,\n \"presence_penalty\": 0,\n \"max_tokens\": 4096,\n \"stream\": true\n} ",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"headerParameters": {
"parameters": [
{
"name": "Accept",
"value": "application/json"
}
]
}
},
"credentials": {
"httpBearerAuth": {
"id": "C39RW210A9LPDPUu",
"name": "Bearer YOUR_TOKEN_HERE Nvidia_Deepseekv31"
}
},
"typeVersion": 4.2
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "34faee65-7df2-4012-93bf-50660415c2d2",
"connections": {
"0b86c542-74ce-4456-b025-07025e6f57a7": {
"main": [
[
{
"node": "8a0ca7d2-f4c0-4a95-9a7a-63c9d40ef77e",
"type": "main",
"index": 0
}
]
]
},
"556f837e-5958-4121-9142-f3a05b560190": {
"main": [
[
{
"node": "38a42944-835b-422c-b872-b20c8f899210",
"type": "main",
"index": 0
}
],
[
{
"node": "0d948f27-f325-4776-88f5-17993c22f382",
"type": "main",
"index": 0
}
],
[
{
"node": "d0e9668b-1c75-4e41-90ec-684abeae0d49",
"type": "main",
"index": 0
}
],
[
{
"node": "8fb1c1df-6544-4275-af67-c7f85b9fed92",
"type": "main",
"index": 0
}
],
[
{
"node": "38a42944-835b-422c-b872-b20c8f899210",
"type": "main",
"index": 0
},
{
"node": "0d948f27-f325-4776-88f5-17993c22f382",
"type": "main",
"index": 0
},
{
"node": "8fb1c1df-6544-4275-af67-c7f85b9fed92",
"type": "main",
"index": 0
}
]
]
},
"8a0ca7d2-f4c0-4a95-9a7a-63c9d40ef77e": {
"main": [
[
{
"node": "20e9c15e-cd3d-4624-8620-5e100081bab1",
"type": "main",
"index": 0
}
]
]
},
"Webhook Trigger": {
"main": [
[
{
"node": "556f837e-5958-4121-9142-f3a05b560190",
"type": "main",
"index": 0
}
]
]
},
"d0e9668b-1c75-4e41-90ec-684abeae0d49": {
"main": [
[
{
"node": "0b86c542-74ce-4456-b025-07025e6f57a7",
"type": "main",
"index": 2
}
]
]
},
"8fb1c1df-6544-4275-af67-c7f85b9fed92": {
"main": [
[
{
"node": "0b86c542-74ce-4456-b025-07025e6f57a7",
"type": "main",
"index": 3
}
]
]
},
"38a42944-835b-422c-b872-b20c8f899210": {
"main": [
[
{
"node": "0b86c542-74ce-4456-b025-07025e6f57a7",
"type": "main",
"index": 0
}
]
]
},
"0d948f27-f325-4776-88f5-17993c22f382": {
"main": [
[
{
"node": "0b86c542-74ce-4456-b025-07025e6f57a7",
"type": "main",
"index": 1
}
]
]
}
}
}¿Cómo usar este flujo de trabajo?
Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.
¿En qué escenarios es adecuado este flujo de trabajo?
Intermedio
¿Es de pago?
Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.
Flujos de trabajo relacionados recomendados
Cheng Siong Chin
@cschinProf. Cheng Siong CHIN serves as Chair Professor in Intelligent Systems Modelling and Simulation in Newcastle University, Singapore. His academic credentials include an M.Sc. in Advanced Control and Systems Engineering from The University of Manchester and a Ph.D. in Robotics from Nanyang Technological University.
Compartir este flujo de trabajo