Etiquetado y análisis automáticos de comentarios de clientes en Google Sheets usando OpenAI
Este es unMarket Research, AI Summarizationflujo de automatización del dominio deautomatización que contiene 24 nodos.Utiliza principalmente nodos como Set, Code, Merge, GoogleSheets, ManualTrigger. Procesamiento por lotes de comentarios de clientes en Google Sheets, para análisis de sentimiento y emociones
- •Credenciales de API de Google Sheets
- •Clave de API de OpenAI
Nodos utilizados (24)
{
"id": "vt26lV2qI3OlOvin",
"meta": {
"instanceId": "a970479b9b937d4c4802e373a8116e0d4e6c86989709fbee9c5a38c7f63fd033"
},
"name": "Auto-tag and analyze customer feedback in Google Sheets with OpenAI",
"tags": [
{
"id": "GCoQbohMyJ7ZU01a",
"name": "Customer Support",
"createdAt": "2025-10-18T17:05:33.588Z",
"updatedAt": "2025-10-18T17:05:33.588Z"
},
{
"id": "nNjwOWFKi8QHbVYy",
"name": "User Experience",
"createdAt": "2025-10-18T17:05:19.693Z",
"updatedAt": "2025-10-18T17:05:19.693Z"
}
],
"nodes": [
{
"id": "20d919c3-088c-4748-bf11-31a8f1490c24",
"name": "Al hacer clic en 'Ejecutar flujo de trabajo'",
"type": "n8n-nodes-base.manualTrigger",
"position": [
1616,
288
],
"parameters": {},
"typeVersion": 1
},
{
"id": "d9064168-bf99-4066-89a7-0dbe19c8f3ae",
"name": "Obtener Etiquetas Permitidas",
"type": "n8n-nodes-base.googleSheets",
"position": [
2464,
272
],
"parameters": {
"options": {},
"sheetName": {
"__rl": true,
"mode": "name",
"value": "Tags"
},
"documentId": {
"__rl": true,
"mode": "url",
"value": "=GOOGLE_SHEETS_URL"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "YOUR_CREDENTIAL_ID",
"name": "Google Sheets account"
}
},
"typeVersion": 4.7
},
{
"id": "7f0ee6a9-cfd1-449d-96c7-5dcd180fc152",
"name": "Obtener Nuevos Comentarios",
"type": "n8n-nodes-base.googleSheets",
"position": [
2464,
1152
],
"parameters": {
"options": {},
"filtersUI": {
"values": [
{
"lookupColumn": "Status"
}
]
},
"sheetName": {
"__rl": true,
"mode": "name",
"value": "Feedbacks"
},
"documentId": {
"__rl": true,
"mode": "url",
"value": "=GOOGLE_SHEETS_URL"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "YOUR_CREDENTIAL_ID",
"name": "Google Sheets account"
}
},
"typeVersion": 4.7
},
{
"id": "dcf3888e-b2f4-4d35-acc2-48798368aee2",
"name": "Combinar Etiquetas y Comentarios",
"type": "n8n-nodes-base.merge",
"position": [
3136,
720
],
"parameters": {
"mode": "chooseBranch"
},
"typeVersion": 2.1
},
{
"id": "086461e1-dc56-412a-a073-740af265b83e",
"name": "Adjuntar Array de Etiquetas",
"type": "n8n-nodes-base.set",
"position": [
3552,
736
],
"parameters": {
"values": {
"string": [
{
"name": "tags",
"value": "={{ $items('Fetch Allowed Tags').map(i => i.json['Tags']) }}"
}
]
},
"options": {}
},
"typeVersion": 2
},
{
"id": "bce8aee5-89f5-423c-89f9-b6b0705a3d50",
"name": "Etiquetar Comentarios con IA",
"type": "@n8n/n8n-nodes-langchain.openAi",
"position": [
4784,
880
],
"parameters": {
"modelId": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini",
"cachedResultName": "GPT-4O-MINI"
},
"options": {},
"messages": {
"values": [
{
"role": "system",
"content": "=You are a tagging, sentiment, and emotion analysis assistant. \n\nInput format:\n- You will receive multiple feedbacks in an array under `feedbacks`.\n- Each feedback item has: `row_number` and `text`.\n- Feedback text may be multilingual (e.g., Persian/Farsi). Analyze natively.\n- You will also receive an `allowed_tags` array (may be empty).\n\nGeneral rules:\n- Analyze each feedback independently.\n- Detect and describe emotional tone naturally.\n- Identify one **primary emotion** that captures the dominant feeling.\n- Optionally include up to two **secondary emotions** that reflect additional nuances.\n- Output must be a **valid JSON array** only, with **no extra text** before or after.\n- Maintain the original input order.\n\n⚠️ CRITICAL TAGGING RULES (2-tier system with STRONG preference for allowed_tags):\n\n**TIER 1: ALWAYS TRY ALLOWED TAGS FIRST (Your Primary Responsibility)**\n- If `allowed_tags` is provided, you MUST thoroughly examine it for matches.\n- **Be creative and flexible in matching:**\n - Look for direct matches (e.g., \"Bug\" for bug reports)\n - Look for semantic matches (e.g., \"Payment\" tag for \"billing issue\" feedback)\n - Look for category matches (e.g., \"Performance\" for \"slow\", \"lag\", \"loading\")\n - Look for broader themes (e.g., \"User Experience\" for usability complaints)\n- **Think broadly:** A tag doesn't need to be a perfect word-for-word match.\n- Consider the **intent and topic** of the feedback, not just exact keywords.\n- Return up to **3** most relevant tags from `allowed_tags` (sorted by relevance).\n- **Only proceed to Tier 2 if you genuinely cannot find ANY relevant match** after careful analysis.\n\n**TIER 2: AI-Generated Tags (ONLY as a last resort)**\n- Use this ONLY when:\n - `allowed_tags` is completely empty, OR\n - After thorough analysis, absolutely NO tag in `allowed_tags` relates to the feedback topic\n- Generate up to **2 custom, descriptive tags** (short labels like \"UI Bug\", \"Pricing Question\").\n- Put these in `ai_tag_1` and `ai_tag_2`.\n- Use \"\" for empty AI tag fields.\n\n**Decision Flow:**\n1. Read the feedback carefully\n2. Review ALL allowed_tags thoroughly\n3. Can you match any tag semantically or thematically? → YES = Use allowed tags, set ai_tag_1=\"\", ai_tag_2=\"\"\n4. Still no match after careful review? → Use AI tags as fallback\n\nSentiment scale (choose one):\n[\"Very Negative\", \"Negative\", \"Neutral\", \"Positive\", \"Very Positive\"].\n\nEmotions:\n- primary_emotion: one clear emotional label (e.g., \"anger\", \"hope\", \"disappointment\", \"relief\", \"satisfaction\", \"gratitude\").\n- secondary_emotion: optional supporting emotional state (e.g., \"frustration\", \"trust\", \"curiosity\", \"anxiety\"). Use \"\" if none applies.\n\nResponse JSON schema (use exactly these keys):\n[\n {\n \"row_number\": <row_number from input>,\n \"tags\": [\"tag_from_allowed_list_1\", \"tag_from_allowed_list_2\"],\n \"ai_tag_1\": \"\",\n \"ai_tag_2\": \"\",\n \"sentiment\": \"Positive\",\n \"primary_emotion\": \"Gratitude\",\n \"secondary_emotion\": \"Relief\"\n }\n]\n\nExamples of GOOD matching behavior:\n✅ Feedback: \"The app crashes constantly\" + allowed_tags: [\"Bug\", \"Stability\", \"Feature\"] → tags: [\"Bug\", \"Stability\"]\n✅ Feedback: \"Can't complete checkout\" + allowed_tags: [\"Payment\", \"Technical Issue\", \"UI\"] → tags: [\"Payment\", \"Technical Issue\"]\n✅ Feedback: \"Love the new design!\" + allowed_tags: [\"Design\", \"Positive Feedback\", \"UI\"] → tags: [\"Design\", \"Positive Feedback\"]\n✅ Feedback: \"Too expensive for what it offers\" + allowed_tags: [\"Pricing\", \"Value\", \"Feature Request\"] → tags: [\"Pricing\", \"Value\"]\n\nExamples of when to use AI tags:\n❌ Feedback: \"Bug in login\" + allowed_tags: [] → tags: [], ai_tag_1: \"Authentication Bug\", ai_tag_2: \"Login\"\n❌ Feedback: \"Need dark mode\" + allowed_tags: [\"Pricing\", \"Support\", \"Payment\"] → tags: [], ai_tag_1: \"Feature Request\", ai_tag_2: \"UI Customization\"\n\nConstraints:\n- **STRONGLY PREFER allowed_tags** - exhaust all matching possibilities first\n- Do **not** invent tags in the `tags` array — only use exact names from `allowed_tags`\n- Generate creative tags for `ai_tag_1` and `ai_tag_2` ONLY when truly necessary\n- Use ASCII keys exactly as shown. Values must be strings or arrays of strings\n- Do not include reasoning, markdown, or comments — **JSON array only**"
},
{
"content": "={{ JSON.stringify({\n allowed_tags: $json.tags,\n feedbacks: $json.feedbackBatch\n}) }}"
}
]
}
},
"credentials": {
"openAiApi": {
"id": "YOUR_CREDENTIAL_ID",
"name": "OpenAi account"
}
},
"typeVersion": 1.8
},
{
"id": "ac43582f-ba7e-4941-91d1-e48ecb7e1944",
"name": "Actualizar Google Sheet (Etiquetado)",
"type": "n8n-nodes-base.googleSheets",
"position": [
5760,
1024
],
"parameters": {
"columns": {
"value": {
"Tag 1": "={{ $json.tags[0] || ''}}",
"Tag 2": "={{ $json.tags[1] || ''}}",
"Tag 3": "={{ $json.tags[2] || ''}}",
"Status": "={{ $json.tags && $json.tags.length > 0 ? 'Updated' : 'Needs Review' }}",
"AI Tag 1": "={{ $json.ai_tag_1 }}",
"AI Tag 2": "={{ $json.ai_tag_2 }}",
"Sentiment": "={{ $json.sentiment }}",
"row_number": "={{ $json.row_number }}",
"Primary Emotion": "={{ $json.primary_emotion }}",
"Secondary Emotion": "={{ $json.secondary_emotion }}",
"Updated Date (N8N)": "={{ new Date().toISOString().split('T')[0] }}"
},
"schema": [
{
"id": "Sentiment",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Sentiment",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Feedbacks",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Feedbacks",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Status",
"type": "string",
"display": true,
"required": false,
"displayName": "Status",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Tag 1",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Tag 1",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Tag 2",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Tag 2",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Tag 3",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Tag 3",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "AI Tag 1",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "AI Tag 1",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "AI Tag 2",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "AI Tag 2",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Primary Emotion",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Primary Emotion",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Secondary Emotion",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Secondary Emotion",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Updated Date (N8N)",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Updated Date (N8N)",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "row_number",
"type": "number",
"display": true,
"removed": false,
"readOnly": true,
"required": false,
"displayName": "row_number",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"row_number"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "update",
"sheetName": {
"__rl": true,
"mode": "name",
"value": "=Feedbacks"
},
"documentId": {
"__rl": true,
"mode": "url",
"value": "=GOOGLE_SHEETS_URL"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "YOUR_CREDENTIAL_ID",
"name": "Google Sheets account"
}
},
"typeVersion": 4.7
},
{
"id": "1234a97c-f663-454c-abd7-9e64b3098ef4",
"name": "Procesar Comentarios en Lotes",
"type": "n8n-nodes-base.splitInBatches",
"position": [
3936,
848
],
"parameters": {
"options": {},
"batchSize": "=10"
},
"typeVersion": 3
},
{
"id": "12824491-a5d8-42ba-b602-5ad577d0108c",
"name": "Agregar Elementos del Lote",
"type": "n8n-nodes-base.code",
"position": [
4352,
864
],
"parameters": {
"jsCode": "// Aggregate all items in the current batch into a single item\nconst feedbackBatch = $input.all().map((item, index) => ({\n id: index,\n row_number: item.json.row_number,\n text: item.json.Feedbacks\n}));\n\nconst tags = $input.first().json.tags;\n\nreturn {\n json: {\n feedbackBatch,\n tags\n }\n};"
},
"typeVersion": 2
},
{
"id": "54ebf56d-27ec-411d-9973-10a717921e47",
"name": "Dividir Resultados del Lote",
"type": "n8n-nodes-base.code",
"position": [
5312,
864
],
"parameters": {
"jsCode": "// Parse the OpenAI response and split it back into individual items\nconst response = JSON.parse($input.first().json.message.content);\n\n// Handle both array format and object with results property\nconst results = Array.isArray(response) ? response : response.results || [];\n\nreturn results.map(result => ({\n json: {\n row_number: result.row_number,\n tags: result.tags || [],\n sentiment: result.sentiment || \"\",\n ai_tag_1: result.ai_tag_1 || \"\",\n ai_tag_2: result.ai_tag_2 || \"\",\n primary_emotion: result.primary_emotion || \"\",\n secondary_emotion: result.secondary_emotion || \"\"\n }\n}));"
},
"typeVersion": 2
},
{
"id": "3240b804-444e-42ce-b594-166a7f41db4f",
"name": "Nota Adhesiva",
"type": "n8n-nodes-base.stickyNote",
"position": [
640,
16
],
"parameters": {
"width": 768,
"height": 976,
"content": "## 💬 **Auto-tag customer feedback in Google Sheets with OpenAI sentiment analysis**\n\nThis workflow automatically tags user feedback stored in Google Sheets using OpenAI with sentiment and emotion analysis. \nIt reads new feedback, analyzes them in **batches** with a single AI call, and returns relevant tags with detailed insights.\n\n---\n\n### 🧠 What It Does\n- Fetches **allowed tags** from a Tags Sheet \n- Reads **new feedback** (Status = empty) from a Feedbacks Sheet \n- **Sends entire batches (e.g., 10 items) to OpenAI as a single request** 🚀\n- Returns up to **3 most relevant tags** from allowed list (or AI-generated tags as fallback)\n- Analyzes **sentiment** (Very Negative to Very Positive)\n- Detects **emotions** (primary & secondary feelings)\n- Writes all results back to Google Sheets (tags, sentiment, emotions, status, timestamp)\n\n---\n\n### 🚀 How to Set Up \n1. Duplicate the provided [Google Sheet template](https://docs.google.com/spreadsheets/d/1y7B3u5vgQLDidf-NdfPgAiBuQxP9Qa7RvdgsTPG14Fs/edit?usp=sharing).\n2. Connect your **Google Sheets** and **OpenAI** credentials in n8n. \n3. Update the Sheet URLs in the **Fetch Allowed Tags**, **Fetch New Feedbacks**, and **Update Google Sheet** nodes. \n4. Run manually with the **Manual Trigger** or enable the **Schedule Trigger** (runs every 60 minutes). \n\n---\n\n### 🎨 How to Customize \n- Adjust the **System Prompt** in the \"Tag Feedbacks with AI\" node to change tagging rules. \n- Edit the **batch size** (default: 10) in the \"Process Feedbacks in Batches\" node for performance optimization. \n- Change the **schedule interval** in the \"Schedule Trigger\" node (default: 60 minutes). \n- Extend the workflow to send results to Notion, Slack, or Airtable for real-time reporting.\n\n---\n\n#### 💡 Example Use Case\nIdeal for product and research teams who collect customer feedback and want to categorize it automatically into clear, actionable topics with sentiment and emotional insights."
},
"typeVersion": 1
},
{
"id": "22e35300-b79f-4b21-b2fb-47ee274141e2",
"name": "Activador Programado",
"type": "n8n-nodes-base.scheduleTrigger",
"position": [
1600,
832
],
"parameters": {
"rule": {
"interval": [
{
"field": "minutes",
"minutesInterval": 60
}
]
}
},
"typeVersion": 1.2
},
{
"id": "beb9af83-71d0-4cf1-8c33-3d891564d0ba",
"name": "Nota Adhesiva2",
"type": "n8n-nodes-base.stickyNote",
"position": [
2240,
80
],
"parameters": {
"color": 4,
"width": 560,
"height": 352,
"content": "### 🏷️ **Fetch Allowed Tags**\n\nReads the list of available tag names from your **Tags Sheet**. \nEach tag is stored in an array and later passed to OpenAI as `allowed_tags`.\n\n✅ Make sure your Tags sheet has a single column named `Tags`."
},
"typeVersion": 1
},
{
"id": "cc4985d4-7dfd-4efb-965c-125f3ed881c9",
"name": "Nota Adhesiva3",
"type": "n8n-nodes-base.stickyNote",
"position": [
2256,
672
],
"parameters": {
"color": 4,
"width": 560,
"height": 656,
"content": "## 💬 **Fetch New Feedbacks**\n\nReads feedback entries from **Feedbacks Sheet** where `Status` is empty.\n\n### Expected Columns\n- **Feedbacks:** The feedback text\n- **Status:** Empty = new | \"Updated\" = tagged | \"Needs Review\" = no tags found\n- **Tag 1, Tag 2, Tag 3:** Up to 3 tags from allowed list\n- **AI Tag 1, AI Tag 2:** Fallback tags when no allowed tags match\n- **Sentiment:** Very Negative to Very Positive\n- **Primary Emotion:** Dominant feeling (e.g., frustration, gratitude)\n- **Secondary Emotion:** Optional secondary feeling\n- **Updated Date (N8N):** Processing timestamp\n\n✅ All columns must exist with exact names."
},
"typeVersion": 1
},
{
"id": "f91dc3c9-4fc3-4f78-8cc2-f0e4a777d2e5",
"name": "Nota Adhesiva4",
"type": "n8n-nodes-base.stickyNote",
"position": [
4656,
544
],
"parameters": {
"color": 6,
"width": 448,
"height": 480,
"content": "## 🤖 **Tag Feedbacks with OpenAI**\n\nSends entire batch (10 items) as ONE OpenAI request. 🚀\n\n**Output per feedback:**\n- Up to 3 tags from allowed_tags (preferred)\n- Up to 2 AI-generated tags (fallback only)\n- Sentiment: Very Negative to Very Positive\n- Primary & secondary emotions\n- Multilingual support (including Persian/Farsi)\n\n✅ Returns valid JSON array."
},
"typeVersion": 1
},
{
"id": "a8f0f7a3-2c1a-4e8f-a2f0-295cf7332b24",
"name": "Nota Adhesiva5",
"type": "n8n-nodes-base.stickyNote",
"position": [
5648,
656
],
"parameters": {
"color": 4,
"width": 336,
"height": 576,
"content": "## 📊 **Update Google Sheet (Tagged)**\n\nUpdates **Feedbacks Sheet** with:\n- `Tag 1-3` (from allowed list)\n- `AI Tag 1-2` (fallback tags)\n- `Sentiment`\n- `Primary Emotion` & `Secondary Emotion`\n- `Status` (\"Updated\" or \"Needs Review\")\n- `Updated Date (N8N)`\n\n✅ Ensure columns exist with exact names."
},
"typeVersion": 1
},
{
"id": "1a484a39-d4ad-4bb5-8a91-81aea0b218f1",
"name": "Nota Adhesiva6",
"type": "n8n-nodes-base.stickyNote",
"position": [
3840,
544
],
"parameters": {
"color": 7,
"width": 320,
"height": 480,
"content": "## 🔁 **Split In Batches**\n\nBreaks large feedback lists into smaller batches to avoid API rate limits. \nAfter each batch is processed, the loop continues automatically until all rows are tagged.\n\n💡 Default batch size = 10 (you can adjust in config sheet)."
},
"typeVersion": 1
},
{
"id": "e97af0f1-1446-4c9a-9363-cb2674a1d211",
"name": "Nota Adhesiva7",
"type": "n8n-nodes-base.stickyNote",
"position": [
3040,
368
],
"parameters": {
"color": 7,
"width": 320,
"height": 512,
"content": "## 🔗 **Merge Tags & Feedbacks**\n\nThis node combines two input streams:\n- **Input 1:** Feedback items fetched from the Feedbacks Sheet \n- **Input 2:** Allowed tag list fetched from the Tags Sheet \n\nMode: `Choose Branch` \nOutput: Keeps Feedback data (Input 1) while waiting for Tags (Input 2) to arrive. \nEnsures each feedback item can access the full tag list before analysis."
},
"typeVersion": 1
},
{
"id": "20a6d6be-273c-48db-9a53-6dab6a0d6318",
"name": "Nota Adhesiva8",
"type": "n8n-nodes-base.stickyNote",
"position": [
3440,
544
],
"parameters": {
"color": 7,
"width": 320,
"height": 336,
"content": "## 🧩 **Attach Tags Array**\n\nAdds the list of tags from the Tags Sheet to each feedback item. \nThe result includes a field named `tags`, used by OpenAI for tagging."
},
"typeVersion": 1
},
{
"id": "640e7cd5-b2a8-4b5e-9b38-4b0e6f7f583a",
"name": "Nota Adhesiva9",
"type": "n8n-nodes-base.stickyNote",
"position": [
1488,
80
],
"parameters": {
"color": 7,
"width": 352,
"height": 368,
"content": "## 🖱️ **Manual Trigger**\n\nRuns the workflow manually when you click **\"Execute Workflow\"** inside n8n. \nUse this for quick testing or when setting up new credentials and connections.\n\n💡 Best for testing small batches before enabling the automatic schedule."
},
"typeVersion": 1
},
{
"id": "d9ac75a8-f4e1-463b-83ce-2c41519f38c3",
"name": "Nota Adhesiva10",
"type": "n8n-nodes-base.stickyNote",
"position": [
1488,
656
],
"parameters": {
"color": 7,
"width": 352,
"height": 336,
"content": "## ⏰ **Schedule Trigger**\n\nRuns every **60 minutes** automatically.\n\nProcesses all feedback where Status = empty/blank."
},
"typeVersion": 1
},
{
"id": "9a24cb7c-fd3b-4e74-ab5c-95457d2658c3",
"name": "Nota Adhesiva11",
"type": "n8n-nodes-base.stickyNote",
"position": [
6032,
1152
],
"parameters": {
"width": 336,
"height": 80,
"content": "**Created by:** [Parhum Khoshbakht](https://www.linkedin.com/in/parhumm/)\nProduct Manager & Leadership Coach"
},
"typeVersion": 1
},
{
"id": "fe170993-5489-4cbf-9489-bd622ca646a3",
"name": "Nota Adhesiva12",
"type": "n8n-nodes-base.stickyNote",
"position": [
4224,
544
],
"parameters": {
"color": 7,
"width": 336,
"height": 480,
"content": "## 📦 **Aggregate Batch Items**\n\n**Collects all feedback items in the current batch and combines them into a single item.**\n\nThis allows us to send all 10 feedbacks (or configured batch size) as ONE request to OpenAI instead of 10 separate requests.\n\n💰 **Cost savings:** ~90% reduction in API calls!"
},
"typeVersion": 1
},
{
"id": "0ba2d396-07e4-45b5-aebd-7b2b23758630",
"name": "Nota Adhesiva13",
"type": "n8n-nodes-base.stickyNote",
"position": [
5200,
560
],
"parameters": {
"color": 7,
"width": 336,
"height": 448,
"content": "## 🔀 **Split Batch Results**\n\n**Parses the OpenAI response and splits it back into individual feedback items.**\n\nEach item contains:\n- `row_number`: To match with the original Google Sheet row\n- `tags`: Array of tag names (up to 3)\n- `sentiment`: Sentiment classification\n\nThese items are then sent to the Google Sheet update node one by one."
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "4213cde2-0655-4e7a-ad52-47b312aacb8c",
"connections": {
"22e35300-b79f-4b21-b2fb-47ee274141e2": {
"main": [
[
{
"node": "d9064168-bf99-4066-89a7-0dbe19c8f3ae",
"type": "main",
"index": 0
},
{
"node": "7f0ee6a9-cfd1-449d-96c7-5dcd180fc152",
"type": "main",
"index": 0
}
]
]
},
"086461e1-dc56-412a-a073-740af265b83e": {
"main": [
[
{
"node": "1234a97c-f663-454c-abd7-9e64b3098ef4",
"type": "main",
"index": 0
}
]
]
},
"d9064168-bf99-4066-89a7-0dbe19c8f3ae": {
"main": [
[
{
"node": "dcf3888e-b2f4-4d35-acc2-48798368aee2",
"type": "main",
"index": 1
}
]
]
},
"7f0ee6a9-cfd1-449d-96c7-5dcd180fc152": {
"main": [
[
{
"node": "dcf3888e-b2f4-4d35-acc2-48798368aee2",
"type": "main",
"index": 0
}
]
]
},
"54ebf56d-27ec-411d-9973-10a717921e47": {
"main": [
[
{
"node": "ac43582f-ba7e-4941-91d1-e48ecb7e1944",
"type": "main",
"index": 0
}
]
]
},
"12824491-a5d8-42ba-b602-5ad577d0108c": {
"main": [
[
{
"node": "bce8aee5-89f5-423c-89f9-b6b0705a3d50",
"type": "main",
"index": 0
}
]
]
},
"bce8aee5-89f5-423c-89f9-b6b0705a3d50": {
"main": [
[
{
"node": "54ebf56d-27ec-411d-9973-10a717921e47",
"type": "main",
"index": 0
}
]
]
},
"dcf3888e-b2f4-4d35-acc2-48798368aee2": {
"main": [
[
{
"node": "086461e1-dc56-412a-a073-740af265b83e",
"type": "main",
"index": 0
}
]
]
},
"1234a97c-f663-454c-abd7-9e64b3098ef4": {
"main": [
[],
[
{
"node": "12824491-a5d8-42ba-b602-5ad577d0108c",
"type": "main",
"index": 0
}
]
]
},
"ac43582f-ba7e-4941-91d1-e48ecb7e1944": {
"main": [
[
{
"node": "1234a97c-f663-454c-abd7-9e64b3098ef4",
"type": "main",
"index": 0
}
]
]
},
"20d919c3-088c-4748-bf11-31a8f1490c24": {
"main": [
[
{
"node": "d9064168-bf99-4066-89a7-0dbe19c8f3ae",
"type": "main",
"index": 0
},
{
"node": "7f0ee6a9-cfd1-449d-96c7-5dcd180fc152",
"type": "main",
"index": 0
}
]
]
}
}
}¿Cómo usar este flujo de trabajo?
Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.
¿En qué escenarios es adecuado este flujo de trabajo?
Avanzado - Investigación de mercado, Resumen de IA
¿Es de pago?
Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.
Flujos de trabajo relacionados recomendados
Compartir este flujo de trabajo