ドキュメントを学習ノートに分解
上級
これはOther, AI分野の自動化ワークフローで、42個のノードを含みます。主にSet, Wait, Merge, Switch, SplitOutなどのノードを使用、AI技術を活用したスマート自動化を実現。 テンプレート化されたMistralAIとQdrantを使用してドキュメントを学習ノートに分解
前提条件
- •Qdrantサーバー接続情報
使用ノード (42)
Set
Wait
Merge
Switch
SplitOut
Aggregate
StickyNote
ConvertToFile
ReadWriteFile
SplitInBatches
ExtractFromFile
LocalFileTrigger
ChainLlm
ChainRetrievalQa
VectorStoreQdrant
ChainSummarization
LmChatMistralCloud
OutputParserItemList
RetrieverVectorStore
EmbeddingsMistralCloud
DocumentDefaultDataLoader
TextSplitterRecursiveCharacterTextSplitter
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"meta": {
"instanceId": "26ba763460b97c249b82942b23b6384876dfeb9327513332e743c5f6219c2b8e"
},
"nodes": [
{
"id": "a3af309b-d24c-42fe-8bcd-f330927c7a3c",
"name": "ローカルファイルトリガー",
"type": "n8n-nodes-base.localFileTrigger",
"position": [
140,
260
],
"parameters": {
"path": "/home/node/storynotes/context",
"events": [
"add"
],
"options": {
"usePolling": true,
"followSymlinks": true
},
"triggerOn": "folder"
},
"typeVersion": 1
},
{
"id": "048f9d67-6519-4dea-97df-aaddfefbfea2",
"name": "デフォルトデータローダー",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
1300,
720
],
"parameters": {
"options": {
"metadata": {
"metadataValues": [
{
"name": "project",
"value": "={{ $('Settings').item.json.project }}"
},
{
"name": "filename",
"value": "={{ $('Settings').item.json.filename }}"
}
]
}
},
"jsonData": "={{ $json.data }}",
"jsonMode": "expressionData"
},
"typeVersion": 1
},
{
"id": "9e9047c9-4428-4afb-8c74-d6eb1075a65a",
"name": "再帰的文字列テキストスプリッター",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
1300,
860
],
"parameters": {
"options": {},
"chunkSize": 2000
},
"typeVersion": 1
},
{
"id": "e42e3f82-6cd9-40c4-9da2-8f87ee5b3956",
"name": "Embeddings Mistral Cloud",
"type": "@n8n/n8n-nodes-langchain.embeddingsMistralCloud",
"position": [
1180,
720
],
"parameters": {
"options": {}
},
"credentials": {
"mistralCloudApi": {
"id": "EIl2QxhXAS9Hkg37",
"name": "Mistral Cloud account"
}
},
"typeVersion": 1
},
{
"id": "578c63db-4f6e-4341-ab0d-111debd519be",
"name": "Mistral Cloud チャットモデル",
"type": "@n8n/n8n-nodes-langchain.lmChatMistralCloud",
"position": [
2660,
840
],
"parameters": {
"model": "open-mixtral-8x7b",
"options": {}
},
"credentials": {
"mistralCloudApi": {
"id": "EIl2QxhXAS9Hkg37",
"name": "Mistral Cloud account"
}
},
"typeVersion": 1
},
{
"id": "c34adb3e-1fb9-4248-ae83-2bac34c8b0a4",
"name": "Mistral Cloud チャットモデル1",
"type": "@n8n/n8n-nodes-langchain.lmChatMistralCloud",
"position": [
1200,
400
],
"parameters": {
"model": "open-mixtral-8x7b",
"options": {}
},
"credentials": {
"mistralCloudApi": {
"id": "EIl2QxhXAS9Hkg37",
"name": "Mistral Cloud account"
}
},
"typeVersion": 1
},
{
"id": "98e6dcc0-1e3a-4119-b657-0949f34ba525",
"name": "受信ドキュメント準備",
"type": "n8n-nodes-base.set",
"position": [
900,
420
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "da64ffde-1e8f-478d-baea-59fc05e6d3ce",
"name": "data",
"type": "string",
"value": "={{ $json.text }}"
}
]
}
},
"typeVersion": 3.3
},
{
"id": "ab88cf9a-d310-4bef-9280-8b23729e7cc9",
"name": "設定",
"type": "n8n-nodes-base.set",
"position": [
320,
260
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "df327b01-961c-4a49-8455-58c3fbff111a",
"name": "project",
"type": "string",
"value": "={{ $json.path.split('/').slice(0, 4)[3] }}"
},
{
"id": "6b7d26f9-3a38-417e-85d0-4e9d42476465",
"name": "path",
"type": "string",
"value": "={{ $json.path }}"
},
{
"id": "bb4471c7-d894-4739-99a6-4be247794ffa",
"name": "filename",
"type": "string",
"value": "={{ $json.path.split('/').last() }}"
}
]
}
},
"typeVersion": 3.3
},
{
"id": "35c6b678-e6e9-4adf-a904-909fa2401d5e",
"name": "マージ",
"type": "n8n-nodes-base.merge",
"position": [
1600,
420
],
"parameters": {
"mode": "chooseBranch"
},
"typeVersion": 2.1
},
{
"id": "0fa13be8-8500-486c-a1c6-cc1df00a4947",
"name": "ドキュメントタイプ取得",
"type": "n8n-nodes-base.set",
"position": [
2000,
420
],
"parameters": {
"mode": "raw",
"options": {},
"jsonOutput": "{\n \"docs\": [\n {\n \"filename\": \"study_guide.md\",\n \"title\": \"Study Guide\",\n \"description\": \"A Study Guide is a consolidated resource designed to aid learning. This guide includes three key elements: * A short answer quiz accompanied by an answer key to test comprehension. * A curated list of long-form essay questions to encourage deeper analysis and synthesis of the material. * A glossary of key terms to reinforce understanding of important concepts.\"\n },\n {\n \"filename\": \"timeline.md\",\n \"title\": \"Timeline\",\n \"description\": \"A Timeline organizes all significant events described in the sources you have uploaded in chronological order. This ordered list makes it easier to understand the sequence of events and their connection to the broader context of your sources. In addition to the list of events, the Timeline also provides a “cast of characters,” which comprises short biographical sketches of all the important people mentioned in your uploaded sources. These short biographies can help you quickly grasp the roles of various individuals involved in the events described by the Timeline.\"\n },\n {\n \"filename\": \"briefing_doc.md\",\n \"title\": \"Briefing Doc\",\n \"description\": \"A Briefing Doc identifies and presents the most important facts and insights from the sources in an easy-to-understand outline format. This format is designed to provide a concise overview of the key takeaways from the uploaded materials.\"\n }\n ]\n}\n"
},
"executeOnce": true,
"typeVersion": 3.3
},
{
"id": "e3469368-f214-4549-844e-7febfbbf0202",
"name": "ドキュメントタイプ分割",
"type": "n8n-nodes-base.splitOut",
"position": [
2160,
420
],
"parameters": {
"options": {},
"fieldToSplitOut": "docs"
},
"typeVersion": 1
},
{
"id": "df401e9e-2f70-4079-969b-6b61142fca37",
"name": "各ドキュメントタイプについて...",
"type": "n8n-nodes-base.splitInBatches",
"position": [
2340,
420
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "c334b546-8e11-424d-bdd5-006e7086f24b",
"name": "アイテムリスト出力パーサー",
"type": "@n8n/n8n-nodes-langchain.outputParserItemList",
"position": [
2840,
840
],
"parameters": {
"options": {}
},
"typeVersion": 1
},
{
"id": "4267c2b5-f1cd-4df7-84ee-be01a643a1c1",
"name": "ベクトルストアリトリーバー",
"type": "@n8n/n8n-nodes-langchain.retrieverVectorStore",
"position": [
3200,
840
],
"parameters": {},
"typeVersion": 1
},
{
"id": "abf833ec-8a6d-4e13-a526-0ea6b80d578f",
"name": "Embeddings Mistral Cloud1",
"type": "@n8n/n8n-nodes-langchain.embeddingsMistralCloud",
"position": [
3200,
1060
],
"parameters": {
"options": {}
},
"credentials": {
"mistralCloudApi": {
"id": "EIl2QxhXAS9Hkg37",
"name": "Mistral Cloud account"
}
},
"typeVersion": 1
},
{
"id": "a0e50185-6662-4b11-9922-59e8b06e4967",
"name": "Qdrantベクトルストア1",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
3200,
940
],
"parameters": {
"qdrantCollection": {
"__rl": true,
"mode": "list",
"value": "storynotes",
"cachedResultName": "storynotes"
}
},
"credentials": {
"qdrantApi": {
"id": "NyinAS3Pgfik66w5",
"name": "QdrantApi account"
}
},
"typeVersion": 1
},
{
"id": "20c5766a-d3ce-4c01-a76b-facf1a00abc2",
"name": "Mistral Cloud チャットモデル2",
"type": "@n8n/n8n-nodes-langchain.lmChatMistralCloud",
"position": [
3100,
840
],
"parameters": {
"options": {}
},
"credentials": {
"mistralCloudApi": {
"id": "EIl2QxhXAS9Hkg37",
"name": "Mistral Cloud account"
}
},
"typeVersion": 1
},
{
"id": "f049b7af-07f3-47e5-9476-68d73a387978",
"name": "分割出力",
"type": "n8n-nodes-base.splitOut",
"position": [
2960,
680
],
"parameters": {
"options": {},
"fieldToSplitOut": "response"
},
"typeVersion": 1
},
{
"id": "39042ae0-e17f-46cd-84be-728868950d84",
"name": "集約",
"type": "n8n-nodes-base.aggregate",
"position": [
3400,
680
],
"parameters": {
"options": {},
"fieldsToAggregate": {
"fieldToAggregate": [
{
"fieldToAggregate": "response.text"
}
]
}
},
"typeVersion": 1
},
{
"id": "e3b900c8-515d-4ac7-88fa-c364134ba9f9",
"name": "Mistral Cloud チャットモデル3",
"type": "@n8n/n8n-nodes-langchain.lmChatMistralCloud",
"position": [
3540,
840
],
"parameters": {
"model": "open-mixtral-8x7b",
"options": {}
},
"credentials": {
"mistralCloudApi": {
"id": "EIl2QxhXAS9Hkg37",
"name": "Mistral Cloud account"
}
},
"typeVersion": 1
},
{
"id": "efb26a5d-6a61-44b2-ad99-6d1f8b48998d",
"name": "発見",
"type": "@n8n/n8n-nodes-langchain.chainRetrievalQa",
"position": [
3100,
680
],
"parameters": {
"text": "={{ $json.response }}",
"promptType": "define"
},
"typeVersion": 1.3
},
{
"id": "302b7523-898e-47af-8941-aa5f8a58fd9c",
"name": "2秒待機",
"type": "n8n-nodes-base.wait",
"position": [
3880,
1060
],
"webhookId": "ec58ab18-03c5-4b58-bc2e-24415a236c72",
"parameters": {},
"typeVersion": 1.1
},
{
"id": "007857b0-c12c-4c57-b07f-db30526cd747",
"name": "生成ドキュメント取得",
"type": "n8n-nodes-base.set",
"position": [
2680,
240
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "b38546b2-47c4-4967-a2d7-98aebd589e95",
"name": "data",
"type": "string",
"value": "={{ $json.text }}"
},
{
"id": "a263519a-aa05-410a-b4f0-f5e22cc5058c",
"name": "path",
"type": "string",
"value": "={{ $('Prep For AI').item.json.path }}"
},
{
"id": "ec1687d6-0ea9-460f-b9d4-ae4a7e229e12",
"name": "filename",
"type": "string",
"value": "={{ $('Prep For AI').item.json.name }}"
}
]
}
},
"typeVersion": 3.3
},
{
"id": "36fac35f-df10-41ab-96a7-3a5e67f9d8df",
"name": "生成",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
3540,
680
],
"parameters": {
"text": "=## Document\n{{ $json.text.join('\\n') }}",
"messages": {
"messageValues": [
{
"message": "=Your job is to create a {{ $('For Each Doc Type...').item.json.title }} for the given document. {{ $('For Each Doc Type...').item.json.description }}\n\nGenerate a {{ $('For Each Doc Type...').item.json.title }} for the given document. If questions are generated, generate the answers alongside them. Format your response in markdown; use \"#\" to format headings, use \"*\" to format lists."
}
]
},
"promptType": "define"
},
"typeVersion": 1.4
},
{
"id": "b9a79cb0-bcc1-4d73-af93-5f8d7e2258a9",
"name": "AI準備",
"type": "n8n-nodes-base.set",
"position": [
1760,
420
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "5c864125-c884-4d33-b0ed-e3eecd354196",
"name": "id",
"type": "string",
"value": "={{ $('Settings').first().json.filename.hash() }}"
},
{
"id": "93ac14c1-ae97-4ef2-a66f-6c1110f3b0fc",
"name": "project",
"type": "string",
"value": "={{ $('Settings').first().json.project }}"
},
{
"id": "fafd16b9-0002-4f7c-89d0-29788f8ec472",
"name": "path",
"type": "string",
"value": "={{ $('Settings').first().json.path }}"
},
{
"id": "5a5860ba-918b-4fb8-b18c-96c1cd22091a",
"name": "name",
"type": "string",
"value": "={{ $('Settings').first().json.filename }}"
},
{
"id": "1a1caf65-85d8-4f74-a3be-503ccfc0b2c9",
"name": "summary",
"type": "string",
"value": "={{ $('Summarization Chain').first().json.response.text }}"
}
]
}
},
"typeVersion": 3.3
},
{
"id": "e40c7e99-9813-4f06-92bb-dfb2839f1037",
"name": "バイナリ変換",
"type": "n8n-nodes-base.convertToFile",
"position": [
2860,
240
],
"parameters": {
"options": {},
"operation": "toText",
"sourceProperty": "={{ $json.data }}"
},
"typeVersion": 1.1
},
{
"id": "b55df916-7a51-4114-91b8-18a3c6ba2c56",
"name": "フォルダへエクスポート",
"type": "n8n-nodes-base.readWriteFile",
"position": [
3020,
240
],
"parameters": {
"options": {},
"fileName": "={{\n $('Get Generated Documents').item.json.path.replace(\n $('Get Generated Documents').item.json.path.split('/').last(),\n $('Get Generated Documents').item.json.filename.substring(0,21) + '...' + $('Split Out Doc Types').item.json.title + '.md'\n )\n}}",
"operation": "write"
},
"typeVersion": 1
},
{
"id": "8490664e-0ca5-4839-ad03-d3f9706c99a3",
"name": "ファイルタイプ取得",
"type": "n8n-nodes-base.switch",
"position": [
480,
420
],
"parameters": {
"rules": {
"values": [
{
"outputKey": "pdf",
"conditions": {
"options": {
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"operator": {
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json.fileType }}",
"rightValue": "pdf"
}
]
},
"renameOutput": true
},
{
"outputKey": "docx",
"conditions": {
"options": {
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "3a5f509d-46fe-490c-95f0-35124873c63e",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json.fileType }}",
"rightValue": "docx"
}
]
},
"renameOutput": true
},
{
"outputKey": "everything else",
"conditions": {
"options": {
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "75188d2f-4bea-44ea-a579-9b9a1bd1ea93",
"operator": {
"type": "object",
"operation": "exists",
"singleValue": true
},
"leftValue": "={{ $json }}",
"rightValue": ""
}
]
},
"renameOutput": true
}
]
},
"options": {}
},
"typeVersion": 3
},
{
"id": "386f7aac-f3b9-4565-907f-687d48b00c52",
"name": "ファイルインポート",
"type": "n8n-nodes-base.readWriteFile",
"position": [
320,
420
],
"parameters": {
"options": {},
"fileSelector": "={{ $json.path }}"
},
"typeVersion": 1
},
{
"id": "6ade93d5-61c3-450a-b78c-e210c18c0e70",
"name": "PDFから抽出",
"type": "n8n-nodes-base.extractFromFile",
"position": [
680,
260
],
"parameters": {
"options": {},
"operation": "pdf"
},
"typeVersion": 1
},
{
"id": "f413e139-3f9c-438f-8e82-824c38f09c6b",
"name": "DOCXから抽出",
"type": "n8n-nodes-base.extractFromFile",
"position": [
680,
420
],
"parameters": {
"options": {},
"operation": "ods"
},
"typeVersion": 1
},
{
"id": "455fadea-f5c7-4bea-983f-b06da4e57510",
"name": "TEXTから抽出",
"type": "n8n-nodes-base.extractFromFile",
"position": [
680,
580
],
"parameters": {
"options": {},
"operation": "text"
},
"typeVersion": 1
},
{
"id": "b2586011-4985-4075-b51c-90301b1a8cf9",
"name": "要約チェーン",
"type": "@n8n/n8n-nodes-langchain.chainSummarization",
"position": [
1200,
260
],
"parameters": {
"options": {},
"chunkSize": 4000
},
"typeVersion": 2
},
{
"id": "1502e72c-e97e-4148-8138-01818ab5b104",
"name": "付箋ノート",
"type": "n8n-nodes-base.stickyNote",
"position": [
60,
85.80882007954312
],
"parameters": {
"color": 7,
"width": 995.1475972814769,
"height": 694.0931000693263,
"content": "## Step 1. Watch Folder and Import New Documents\n[Read more about Local File Trigger](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.localfiletrigger)\n\nWith n8n's local file trigger, we're able to trigger the workflow when files are created in our target folder. We still have to import them however as the trigger will only give the file's path. The \"Extract From\" node is used to get at the file's contents."
},
"typeVersion": 1
},
{
"id": "7b3afc2c-3fb8-4589-9475-78f5617009cc",
"name": "付箋ノート1",
"type": "n8n-nodes-base.stickyNote",
"position": [
1080,
82.96464765818223
],
"parameters": {
"color": 7,
"width": 824.3300768713589,
"height": 949.8141899605673,
"content": "## Step 2. Summarise and Vectorise Document Contents\n[Learn more about using the Qdrant VectorStore](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreqdrant)\n\nCapturing the document into our vector store is intended for a technique we'll use later known as Retrieval Augumented Generation or \"RAG\" for short. For our scenario, this allows our LLM to retrieve context more efficiently which produces better respsonses."
},
"typeVersion": 1
},
{
"id": "74aabb02-ca5d-41ad-b84f-92d66428b774",
"name": "付箋ノート2",
"type": "n8n-nodes-base.stickyNote",
"position": [
1940,
156.7963650826494
],
"parameters": {
"color": 7,
"width": 591.09953935829,
"height": 485.0226378812345,
"content": "## Step 3. Loop through Templates\n\nWe'll ask the LLM to help us generate 3 types of notes from the imported source document. These notes are intended to breakdown the content for faster study. Our templates for this demo are:\n(1) **Study guide**\n(2) **Briefing document**\n(3) **Timeline**"
},
"typeVersion": 1
},
{
"id": "b96f899d-4a44-491c-b164-a42feba129eb",
"name": "付箋ノート3",
"type": "n8n-nodes-base.stickyNote",
"position": [
2560,
480
],
"parameters": {
"color": 7,
"width": 1500.7886103732135,
"height": 806.6560661824452,
"content": "## Step 4. Use AI Agents to Query and Generate Template Documents\n[Read more about using the Question & Answer Retrieval Chain](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainretrievalqa)\n\nn8n allows us to easily use a chain of LLMs as agents which can work together to handle any task!\nHere the agents generate questions to explore the content of the source document and use the answers to generate the template. "
},
"typeVersion": 1
},
{
"id": "77fda269-6877-422f-b6e6-4346bde862db",
"name": "付箋ノート4",
"type": "n8n-nodes-base.stickyNote",
"position": [
2560,
67.64523011966037
],
"parameters": {
"color": 7,
"width": 771.8710855215123,
"height": 384.22073222791266,
"content": "## Step 5. Export Generated Templates To Folder\n[Learn more about writing to the local filesystem](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.filesreadwrite)\n\nFinally, the AI generated documents can now be exported to disk. This workflow makes it easy to generate any kind of document from various source material and can be used for training and sales."
},
"typeVersion": 1
},
{
"id": "08839972-f0f4-4144-bf27-810664cbf828",
"name": "Qdrantベクトルストア",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
1200,
560
],
"parameters": {
"mode": "insert",
"options": {},
"qdrantCollection": {
"__rl": true,
"mode": "list",
"value": "storynotes",
"cachedResultName": "storynotes"
}
},
"credentials": {
"qdrantApi": {
"id": "NyinAS3Pgfik66w5",
"name": "QdrantApi account"
}
},
"typeVersion": 1
},
{
"id": "7e216411-83ee-4b82-9e00-285d4f2d3224",
"name": "付箋ノート5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-360,
80
],
"parameters": {
"width": 390.63004227317265,
"height": 401.0080676370763,
"content": "## Try It Out! \n\n### This workflow automates generating notes from a source document.\n* It watches a target folder to pick up new files.\n* When a new file is detected, it saves the contents of the file in a vectorstore.\n* multiple AI agents guided by a templates list, generate the predetermined notes.\n* These notes are then export alongside the original source file for the user.\n\n\n### Need Help?\nJoin the [Discord](https://discord.com/invite/XPKeKXeB7d) or ask in the [Forum](https://community.n8n.io/)!\n\nHappy Hacking!"
},
"typeVersion": 1
},
{
"id": "f2c363d3-a2bf-4468-ad54-f26649ce6ab8",
"name": "インタビュー",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
2660,
680
],
"parameters": {
"text": "=## document summary\n {{ $('Prep For AI').item.json.summary }}",
"messages": {
"messageValues": [
{
"message": "=Given the following document summary, what questions would you ask to create a {{ $('For Each Doc Type...').item.json.title }} for the document? Generate 5 questions."
}
]
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.4
},
{
"id": "ce3da55d-8c22-40bb-8781-63c2e6bcb824",
"name": "付箋ノート6",
"type": "n8n-nodes-base.stickyNote",
"position": [
1960,
380
],
"parameters": {
"width": 172.26820279743384,
"height": 295.46359440513226,
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n### 💡Add your own templates here!\n"
},
"typeVersion": 1
}
],
"pinData": {},
"connections": {
"302b7523-898e-47af-8941-aa5f8a58fd9c": {
"main": [
[
{
"node": "df401e9e-2f70-4079-969b-6b61142fca37",
"type": "main",
"index": 0
}
]
]
},
"35c6b678-e6e9-4adf-a904-909fa2401d5e": {
"main": [
[
{
"node": "b9a79cb0-bcc1-4d73-af93-5f8d7e2258a9",
"type": "main",
"index": 0
}
]
]
},
"efb26a5d-6a61-44b2-ad99-6d1f8b48998d": {
"main": [
[
{
"node": "39042ae0-e17f-46cd-84be-728868950d84",
"type": "main",
"index": 0
}
]
]
},
"36fac35f-df10-41ab-96a7-3a5e67f9d8df": {
"main": [
[
{
"node": "302b7523-898e-47af-8941-aa5f8a58fd9c",
"type": "main",
"index": 0
}
]
]
},
"ab88cf9a-d310-4bef-9280-8b23729e7cc9": {
"main": [
[
{
"node": "386f7aac-f3b9-4565-907f-687d48b00c52",
"type": "main",
"index": 0
}
]
]
},
"39042ae0-e17f-46cd-84be-728868950d84": {
"main": [
[
{
"node": "36fac35f-df10-41ab-96a7-3a5e67f9d8df",
"type": "main",
"index": 0
}
]
]
},
"f2c363d3-a2bf-4468-ad54-f26649ce6ab8": {
"main": [
[
{
"node": "f049b7af-07f3-47e5-9476-68d73a387978",
"type": "main",
"index": 0
}
]
]
},
"f049b7af-07f3-47e5-9476-68d73a387978": {
"main": [
[
{
"node": "efb26a5d-6a61-44b2-ad99-6d1f8b48998d",
"type": "main",
"index": 0
}
]
]
},
"e40c7e99-9813-4f06-92bb-dfb2839f1037": {
"main": [
[
{
"node": "b55df916-7a51-4114-91b8-18a3c6ba2c56",
"type": "main",
"index": 0
}
]
]
},
"386f7aac-f3b9-4565-907f-687d48b00c52": {
"main": [
[
{
"node": "8490664e-0ca5-4839-ad03-d3f9706c99a3",
"type": "main",
"index": 0
}
]
]
},
"b9a79cb0-bcc1-4d73-af93-5f8d7e2258a9": {
"main": [
[
{
"node": "0fa13be8-8500-486c-a1c6-cc1df00a4947",
"type": "main",
"index": 0
}
]
]
},
"8490664e-0ca5-4839-ad03-d3f9706c99a3": {
"main": [
[
{
"node": "6ade93d5-61c3-450a-b78c-e210c18c0e70",
"type": "main",
"index": 0
}
],
[
{
"node": "f413e139-3f9c-438f-8e82-824c38f09c6b",
"type": "main",
"index": 0
}
],
[
{
"node": "455fadea-f5c7-4bea-983f-b06da4e57510",
"type": "main",
"index": 0
}
]
]
},
"0fa13be8-8500-486c-a1c6-cc1df00a4947": {
"main": [
[
{
"node": "e3469368-f214-4549-844e-7febfbbf0202",
"type": "main",
"index": 0
}
]
]
},
"6ade93d5-61c3-450a-b78c-e210c18c0e70": {
"main": [
[
{
"node": "98e6dcc0-1e3a-4119-b657-0949f34ba525",
"type": "main",
"index": 0
}
]
]
},
"f413e139-3f9c-438f-8e82-824c38f09c6b": {
"main": [
[
{
"node": "98e6dcc0-1e3a-4119-b657-0949f34ba525",
"type": "main",
"index": 0
}
]
]
},
"455fadea-f5c7-4bea-983f-b06da4e57510": {
"main": [
[
{
"node": "98e6dcc0-1e3a-4119-b657-0949f34ba525",
"type": "main",
"index": 0
}
]
]
},
"98e6dcc0-1e3a-4119-b657-0949f34ba525": {
"main": [
[
{
"node": "08839972-f0f4-4144-bf27-810664cbf828",
"type": "main",
"index": 0
},
{
"node": "b2586011-4985-4075-b51c-90301b1a8cf9",
"type": "main",
"index": 0
}
]
]
},
"a3af309b-d24c-42fe-8bcd-f330927c7a3c": {
"main": [
[
{
"node": "ab88cf9a-d310-4bef-9280-8b23729e7cc9",
"type": "main",
"index": 0
}
]
]
},
"048f9d67-6519-4dea-97df-aaddfefbfea2": {
"ai_document": [
[
{
"node": "08839972-f0f4-4144-bf27-810664cbf828",
"type": "ai_document",
"index": 0
}
]
]
},
"08839972-f0f4-4144-bf27-810664cbf828": {
"main": [
[
{
"node": "35c6b678-e6e9-4adf-a904-909fa2401d5e",
"type": "main",
"index": 1
}
]
]
},
"e3469368-f214-4549-844e-7febfbbf0202": {
"main": [
[
{
"node": "df401e9e-2f70-4079-969b-6b61142fca37",
"type": "main",
"index": 0
}
]
]
},
"b2586011-4985-4075-b51c-90301b1a8cf9": {
"main": [
[
{
"node": "35c6b678-e6e9-4adf-a904-909fa2401d5e",
"type": "main",
"index": 0
}
]
]
},
"df401e9e-2f70-4079-969b-6b61142fca37": {
"main": [
[
{
"node": "007857b0-c12c-4c57-b07f-db30526cd747",
"type": "main",
"index": 0
}
],
[
{
"node": "f2c363d3-a2bf-4468-ad54-f26649ce6ab8",
"type": "main",
"index": 0
}
]
]
},
"a0e50185-6662-4b11-9922-59e8b06e4967": {
"ai_vectorStore": [
[
{
"node": "4267c2b5-f1cd-4df7-84ee-be01a643a1c1",
"type": "ai_vectorStore",
"index": 0
}
]
]
},
"4267c2b5-f1cd-4df7-84ee-be01a643a1c1": {
"ai_retriever": [
[
{
"node": "efb26a5d-6a61-44b2-ad99-6d1f8b48998d",
"type": "ai_retriever",
"index": 0
}
]
]
},
"007857b0-c12c-4c57-b07f-db30526cd747": {
"main": [
[
{
"node": "e40c7e99-9813-4f06-92bb-dfb2839f1037",
"type": "main",
"index": 0
}
]
]
},
"c334b546-8e11-424d-bdd5-006e7086f24b": {
"ai_outputParser": [
[
{
"node": "f2c363d3-a2bf-4468-ad54-f26649ce6ab8",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"e42e3f82-6cd9-40c4-9da2-8f87ee5b3956": {
"ai_embedding": [
[
{
"node": "08839972-f0f4-4144-bf27-810664cbf828",
"type": "ai_embedding",
"index": 0
}
]
]
},
"578c63db-4f6e-4341-ab0d-111debd519be": {
"ai_languageModel": [
[
{
"node": "f2c363d3-a2bf-4468-ad54-f26649ce6ab8",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"abf833ec-8a6d-4e13-a526-0ea6b80d578f": {
"ai_embedding": [
[
{
"node": "a0e50185-6662-4b11-9922-59e8b06e4967",
"type": "ai_embedding",
"index": 0
}
]
]
},
"c34adb3e-1fb9-4248-ae83-2bac34c8b0a4": {
"ai_languageModel": [
[
{
"node": "b2586011-4985-4075-b51c-90301b1a8cf9",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"20c5766a-d3ce-4c01-a76b-facf1a00abc2": {
"ai_languageModel": [
[
{
"node": "efb26a5d-6a61-44b2-ad99-6d1f8b48998d",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"e3b900c8-515d-4ac7-88fa-c364134ba9f9": {
"ai_languageModel": [
[
{
"node": "36fac35f-df10-41ab-96a7-3a5e67f9d8df",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"9e9047c9-4428-4afb-8c74-d6eb1075a65a": {
"ai_textSplitter": [
[
{
"node": "048f9d67-6519-4dea-97df-aaddfefbfea2",
"type": "ai_textSplitter",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級 - その他, 人工知能
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
n8nノードの探索(可視化リファレンスライブラリ内)
n8nノードを可視化リファレンスライブラリで探索
If
Ftp
Set
+
If
Ftp
Set
113 ノードI versus AI
その他
納税申告アシスタントの構築:Qdrant、Mistral.ai、OpenAIを使用
税務法アシスタントをQdrant、Mistral.ai、OpenAIで構築
Set
Wait
Filter
+
Set
Wait
Filter
38 ノードJimleuk
財務
AI エージェント レストラン [テンプレート]
🤖 WhatsApp、Instagram、MessengerのAIレストランアシスタント
If
N8n
Set
+
If
N8n
Set
239 ノードAmanda Benks
その他
ペットショップ 4
ペットショップ予約AIエージェント
If
Set
Code
+
If
Set
Code
187 ノードBruno Dias
人工知能
[テンプレート] AIペットショップ v8
AIペットショップアシスタント - GPT-4o、Googleカレンダー、WhatsApp/Instagram/Facebookを統合
If
N8n
Set
+
If
N8n
Set
244 ノードAmanda Benks
営業
🤖 WhatsApp AI个人アシスタント:GPT-4o、记忆と日程安排功能
AI个人アシスタント:統合GPT-4o、RAGと语音功能,使用SupabaseのWhatsAppアシスタント
If
Set
Wait
+
If
Set
Wait
76 ノードAmanda Benks
人工知能
ワークフロー情報
難易度
上級
ノード数42
カテゴリー2
ノードタイプ22
作成者
Jimleuk
@jimleukFreelance consultant based in the UK specialising in AI-powered automations. I work with select clients tackling their most challenging projects. For business enquiries, send me an email at hello@jimle.uk LinkedIn: https://www.linkedin.com/in/jimleuk/ X/Twitter: https://x.com/jimle_uk
外部リンク
n8n.ioで表示 →
このワークフローを共有