🔍🛠️ PerplexityリサーチャーをHTMLウェブページに変換する

上級

これはAI, Marketing分野の自動化ワークフローで、47個のノードを含みます。主にIf, Set, Webhook, Telegram, HttpRequestなどのノードを使用、AI技術を活用したスマート自動化を実現。 🔍 Perplexity研究結果をHTMLに変換:AI駆動型コンテンツ作成

前提条件
  • HTTP Webhookエンドポイント(n8nが自動生成)
  • Telegram Bot Token
  • ターゲットAPIの認証情報が必要な場合あり
  • OpenAI API Key
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
  "id": "HnqGW0eq5asKfZxf",
  "meta": {
    "instanceId": "03907a25f048377a8789a4332f28148522ba31ee907fababf704f1d88130b1b6",
    "templateCredsSetupCompleted": true
  },
  "name": "🔍🛠️Perplexity Researcher to HTML Web Page",
  "tags": [],
  "nodes": [
    {
      "id": "ad5d96c6-941a-4ab3-b349-10bae99e5988",
      "name": "付箋",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        320,
        1360
      ],
      "parameters": {
        "color": 3,
        "width": 625.851492623043,
        "height": 465.2493344282225,
        "content": "## Create Article from Perplexity Research"
      },
      "typeVersion": 1
    },
    {
      "id": "19b3ca66-5fd2-4d04-b25a-a17fb38642f8",
      "name": "付箋1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1240,
        1360
      ],
      "parameters": {
        "color": 4,
        "width": 479.02028317328745,
        "height": 464.14912719677955,
        "content": "## Convert Article into HTML"
      },
      "typeVersion": 1
    },
    {
      "id": "7fad54e8-5a50-42da-b38d-08f6912615ab",
      "name": "gpt-4o-mini",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        1380,
        1660
      ],
      "parameters": {
        "model": "gpt-4o-mini-2024-07-18",
        "options": {
          "responseFormat": "text"
        }
      },
      "credentials": {
        "openAiApi": {
          "id": "h597GY4ZJQD47RQd",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "5291869f-3ac6-4ce2-88f3-b572924b6082",
      "name": "gpt-4o-mini1",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        1560,
        1040
      ],
      "parameters": {
        "options": {
          "topP": 1,
          "timeout": 60000,
          "maxTokens": -1,
          "maxRetries": 2,
          "temperature": 0,
          "responseFormat": "text",
          "presencePenalty": 0,
          "frequencyPenalty": 0
        }
      },
      "credentials": {
        "openAiApi": {
          "id": "h597GY4ZJQD47RQd",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "a232f6ca-ad4c-40fa-a641-f0dd83c8f18a",
      "name": "構造化出力パーサー1",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        640,
        1660
      ],
      "parameters": {
        "schemaType": "manual",
        "inputSchema": "{\n  \"type\": \"object\",\n  \"properties\": {\n    \"article\": {\n      \"type\": \"object\",\n      \"required\": [\"category\", \"title\", \"metadata\", \"content\", \"hashtags\"],\n      \"properties\": {\n        \"category\": {\n          \"type\": \"string\",\n          \"description\": \"Article category\"\n        },\n        \"title\": {\n          \"type\": \"string\",\n          \"description\": \"Article title\"\n        },\n        \"metadata\": {\n          \"type\": \"object\",\n          \"properties\": {\n            \"timePosted\": {\n              \"type\": \"string\",\n              \"description\": \"Time since article was posted\"\n            },\n            \"author\": {\n              \"type\": \"string\",\n              \"description\": \"Article author name\"\n            },\n            \"tag\": {\n              \"type\": \"string\",\n              \"description\": \"Article primary tag\"\n            }\n          },\n          \"required\": [\"timePosted\", \"author\", \"tag\"]\n        },\n        \"content\": {\n          \"type\": \"object\",\n          \"properties\": {\n            \"mainText\": {\n              \"type\": \"string\",\n              \"description\": \"Main article content\"\n            },\n            \"sections\": {\n              \"type\": \"array\",\n              \"items\": {\n                \"type\": \"object\",\n                \"properties\": {\n                  \"title\": {\n                    \"type\": \"string\",\n                    \"description\": \"Section title\"\n                  },\n                  \"text\": {\n                    \"type\": \"string\",\n                    \"description\": \"Section content\"\n                  },\n                  \"quote\": {\n                    \"type\": \"string\",\n                    \"description\": \"Blockquote text\"\n                  }\n                },\n                \"required\": [\"title\", \"text\", \"quote\"]\n              }\n            }\n          },\n          \"required\": [\"mainText\", \"sections\"]\n        },\n        \"hashtags\": {\n          \"type\": \"array\",\n          \"items\": {\n            \"type\": \"string\"\n          },\n          \"description\": \"Article hashtags\"\n        }\n      }\n    }\n  }\n}"
      },
      "typeVersion": 1.2
    },
    {
      "id": "e7d1adac-88aa-4f76-92bf-bbac3aa6386a",
      "name": "gpt-4o-mini2",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        420,
        1660
      ],
      "parameters": {
        "options": {
          "topP": 1,
          "timeout": 60000,
          "maxTokens": -1,
          "maxRetries": 2,
          "temperature": 0,
          "responseFormat": "json_object",
          "presencePenalty": 0,
          "frequencyPenalty": 0
        }
      },
      "credentials": {
        "openAiApi": {
          "id": "h597GY4ZJQD47RQd",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "156e51db-03f7-4099-afe8-6f0361c5b497",
      "name": "Webhook",
      "type": "n8n-nodes-base.webhook",
      "position": [
        160,
        860
      ],
      "webhookId": "6a8e3ae7-02ae-4663-a27a-07df448550ab",
      "parameters": {
        "path": "pblog",
        "options": {},
        "responseMode": "responseNode"
      },
      "typeVersion": 2
    },
    {
      "id": "6dd3eba7-e779-4e4a-960e-c5a7b6b3a929",
      "name": "Webhookへの応答",
      "type": "n8n-nodes-base.respondToWebhook",
      "position": [
        2820,
        1480
      ],
      "parameters": {
        "options": {},
        "respondWith": "text",
        "responseBody": "={{ $json.text }}"
      },
      "typeVersion": 1.1
    },
    {
      "id": "27ee681e-4259-4323-b4fe-629f99cb33d0",
      "name": "Telegram",
      "type": "n8n-nodes-base.telegram",
      "position": [
        2320,
        880
      ],
      "parameters": {
        "text": "={{ $('Perplexity Topic Agent').item.json.output.slice(0, 300) }}",
        "chatId": "={{ $json.telegram_chat_id }}",
        "additionalFields": {
          "parse_mode": "HTML",
          "appendAttribution": false
        }
      },
      "credentials": {
        "telegramApi": {
          "id": "BIE64nzfpGeesXUn",
          "name": "Telegram account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "f437d40c-2bf6-43e2-b77b-e5c2cdc35055",
      "name": "gpt-4o-mini5",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        2480,
        1660
      ],
      "parameters": {
        "options": {
          "topP": 1,
          "timeout": 60000,
          "maxTokens": -1,
          "maxRetries": 2,
          "temperature": 0,
          "responseFormat": "text",
          "presencePenalty": 0,
          "frequencyPenalty": 0
        }
      },
      "credentials": {
        "openAiApi": {
          "id": "h597GY4ZJQD47RQd",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "275bce4a-4252-41d4-bcba-174f0c51bf4a",
      "name": "基本LLMチェーン",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        2340,
        1480
      ],
      "parameters": {
        "text": "=Create a modern, responsive single-line HTML document. Convert any markdown to Tailwind CSS classes. Replace markdown lists with proper HTML list elements. Remove all newline characters while preserving </br> tags in content. Enhance the layout with Tailwind CSS cards where appropriate. Use the following base structure, but improve the styling and responsiveness:\n\n<!DOCTYPE html>\n<html lang=\"en\">\n\n<head>\n    <meta charset=\"UTF-8\">\n    <meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\">\n    <title>Comprehensive Overview of DeepSeek V3</title>\n    <link href=\"https://cdn.jsdelivr.net/npm/tailwindcss@2.2.19/dist/tailwind.min.css\" rel=\"stylesheet\">\n</head>\n\n<body class=\"bg-gray-100 font-sans\">\n    <div class=\"relative p-4\">\n        <div class=\"max-w-3xl mx-auto text-sm\">\n            <div class=\"mt-3 bg-white rounded-lg shadow-lg flex flex-col justify-between leading-normal\">\n                <div class=\"p-6\">\n                    <h1 class=\"text-gray-900 font-bold text-4xl mb-4\">Comprehensive Overview of DeepSeek V3</h1>\n                    <div class=\"mb-4\">\n                        <p class=\"leading-8\"><strong>Time Posted:</strong> Just now</p>\n                        <p class=\"leading-8\"><strong>Author:</strong> AI Research Team</p>\n                        <p class=\"leading-8\"><strong>Tag:</strong> AI Models</p>\n                    </div>\n                    <p class=\"leading-8 my-4\"><strong>DeepSeek V3</strong> is a state-of-the-art AI model that leverages\n                        advanced architectures and techniques to deliver high performance across various applications.\n                        This overview covers its key concepts, practical applications, advantages, limitations, and best\n                        practices for implementation.</p>\n                    <section class=\"mb-6\">\n                        <h2 class=\"text-2xl font-bold my-3\">Key Concepts and Core Components</h2>\n                        <p class=\"leading-8 my-3\"><strong>1. Mixture-of-Experts (MoE) Architecture:</strong> DeepSeek V3\n                            employs a Mixture-of-Experts (MoE) architecture, which consists of multiple neural networks,\n                            each optimized for different tasks. This architecture allows for efficient processing by\n                            activating only a portion of the network for each task, reducing hardware costs.</p>\n                        <p class=\"leading-8 my-3\"><strong>2. Parameters:</strong> The model boasts a total of 671\n                            billion\n                            parameters, with 37 billion active parameters for each token during processing. The addition\n                            of\n                            the Multi-Token Prediction (MTP) module increases the total parameters to 685 billion,\n                            making it\n                            significantly larger than other models like Meta's Llama 3.1 (405B).</p>\n                        <p class=\"leading-8 my-3\"><strong>3. Multi-head Latent Attention (MLA):</strong> DeepSeek V3\n                            uses\n                            Multi-head Latent Attention (MLA) to extract key details from text multiple times, improving\n                            its\n                            accuracy.</p>\n                        <p class=\"leading-8 my-3\"><strong>4. Multi-Token Prediction (MTP):</strong> The model utilizes\n                            Multi-Token Prediction to generate several tokens at once, speeding up inference and\n                            enabling\n                            speculative decoding.</p>\n                        <blockquote\n                            class=\"italic leading-8 my-3 p-5 text-indigo-600 font-semibold bg-indigo-50 rounded-lg border-l-4 border-indigo-600\">\n                            DeepSeek V3 employs a Mixture-of-Experts architecture for efficient processing.</blockquote>\n                    </section>\n                    <section class=\"mb-6\">\n                        <h2 class=\"text-2xl font-bold my-3\">Practical Applications</h2>\n                        <ol class=\"list-decimal pl-5\">\n                            <li class=\"leading-8 my-3\"><strong>Translation, Coding, and Content Generation:</strong>\n                                DeepSeek V3 is designed for a wide range of tasks including translation, coding, content\n                                generation, and reasoning. It excels in English, Chinese, coding, and mathematics,\n                                rivaling leading commercial models like OpenAI's GPT-4.</li>\n                            <li class=\"leading-8 my-3\"><strong>Research and Development:</strong> The open-source nature\n                                of DeepSeek V3 fuels innovation, allowing researchers to experiment with and build upon\n                                its technology.</li>\n                            <li class=\"leading-8 my-3\"><strong>Commercial Applications:</strong> The licensing of\n                                DeepSeek V3 makes it permissible for commercial use, opening it up to numerous\n                                applications across different industries.</li>\n                            <li class=\"leading-8 my-3\"><strong>Democratization of AI:</strong> By making powerful AI\n                                accessible, DeepSeek V3 levels the playing field, allowing smaller organizations to\n                                compete with larger ones.</li>\n                        </ol>\n                        <blockquote\n                            class=\"italic leading-8 my-3 p-5 text-indigo-600 font-semibold bg-indigo-50 rounded-lg border-l-4 border-indigo-600\">\n                            DeepSeek V3 democratizes AI access for smaller organizations.</blockquote>\n                    </section>\n                    <section class=\"mb-6\">\n                        <h2 class=\"text-2xl font-bold my-3\">Advantages</h2>\n                        <ol class=\"list-decimal pl-5\">\n                            <li class=\"leading-8 my-3\"><strong>Speed and Efficiency:</strong> DeepSeek V3 processes\n                                information at a blistering 60 tokens per second, a threefold increase over its\n                                predecessor. It uses advanced inference capabilities, deploying 32 H800 GPUs for prefill\n                                and 320 H800 GPUs for decoding.</li>\n                            <li class=\"leading-8 my-3\"><strong>Cost-Effectiveness:</strong> The model was trained for a\n                                mere $5.5 million, a fraction of the estimated over $100 million invested by OpenAI in\n                                GPT-4. DeepSeek V3 offers significantly lower prices for its online services, with 1\n                                million tokens priced at just $1.1, currently offered at a promotional rate of $0.28.\n                            </li>\n                            <li class=\"leading-8 my-3\"><strong>Innovation in Inference:</strong> The model's advanced\n                                inference capabilities set the standard for future model deployment, making it a\n                                powerful tool in the digital realm.</li>\n                        </ol>\n                        <blockquote\n                            class=\"italic leading-8 my-3 p-5 text-indigo-600 font-semibold bg-indigo-50 rounded-lg border-l-4 border-indigo-600\">\n                            DeepSeek V3 processes information at 60 tokens per second.</blockquote>\n                    </section>\n                    <section class=\"mb-6\">\n                        <h2 class=\"text-2xl font-bold my-3\">Limitations</h2>\n                        <ol class=\"list-decimal pl-5\">\n                            <li class=\"leading-8 my-3\"><strong>Deployment Complexity:</strong> Deploying DeepSeek V3\n                                requires advanced hardware and a deployment strategy that separates the prefilling and\n                                decoding stages, which might be unachievable for small companies due to a lack of\n                                resources. The recommended deployment unit for DeepSeek V3 is relatively large, posing a\n                                burden for small-sized teams.</li>\n                            <li class=\"leading-8 my-3\"><strong>Potential for Further Enhancement:</strong> Although\n                                DeepSeek V3 has achieved an end-to-end generation speed of more than two times that of\n                                DeepSeek V2, there still remains potential for further enhancement with the development\n                                of more advanced hardware.</li>\n                        </ol>\n                        <blockquote\n                            class=\"italic leading-8 my-3 p-5 text-indigo-600 font-semibold bg-indigo-50 rounded-lg border-l-4 border-indigo-600\">\n                            Deployment of DeepSeek V3 may be complex for small companies.</blockquote>\n                    </section>\n                    <section class=\"mb-6\">\n                        <h2 class=\"text-2xl font-bold my-3\">Best Practices for Implementation</h2>\n                        <ol class=\"list-decimal pl-5\">\n                            <li class=\"leading-8 my-3\"><strong>Hardware Requirements:</strong> Ensure that the\n                                deployment environment has the necessary advanced hardware to handle the model's\n                                requirements, including multiple GPUs for prefill and decoding.</li>\n                            <li class=\"leading-8 my-3\"><strong>Deployment Strategy:</strong> Implement a deployment\n                                strategy that separates the prefilling and decoding stages to optimize performance and\n                                efficiency.</li>\n                            <li class=\"leading-8 my-3\"><strong>Monitoring and Optimization:</strong> Continuously\n                                monitor the model's performance and optimize it as needed to address any limitations and\n                                improve efficiency.</li>\n                            <li class=\"leading-8 my-3\"><strong>Community Engagement:</strong> Engage with the\n                                open-source community to leverage the collective knowledge and resources available,\n                                which can help in addressing any challenges and improving the model further.</li>\n                        </ol>\n                        <blockquote\n                            class=\"italic leading-8 my-3 p-5 text-indigo-600 font-semibold bg-indigo-50 rounded-lg border-l-4 border-indigo-600\">\n                            Engage with the open-source community for better implementation.</blockquote>\n                    </section>\n                    <p class=\"leading-8 my-6\"><strong>Hashtags:</strong> <span\n                            class=\"text-indigo-600\">#DeepSeekV3</span> <span class=\"text-indigo-600\">#AI</span> <span\n                            class=\"text-indigo-600\">#MachineLearning</span> <span\n                            class=\"text-indigo-600\">#OpenSource</span></p>\n                </div>\n            </div>\n        </div>\n    </div>\n</body>\n\n</html>\n\n-------\n\nRequirements:\n- Output must be a single line of HTML\n- Enhanced with modern Tailwind CSS styling\n- Proper HTML list structures\n- Responsive design\n- No newlines except </br> in content\n- No markdown formatting\n- Clean, readable layout\n- Properly formatted hashtags\n- No explanation or additional text in output\n- No code block markers or escape characters\n- Wnsure Metadata, Title and Content are included in HTML\n\nMetadata: {{ $('Article').item.json.article.metadata.toJsonString() }}\nTitle: {{ $json.title }}\nContent: {{ $json.html }}\n",
        "promptType": "define"
      },
      "typeVersion": 1.4
    },
    {
      "id": "cddd9324-8471-4dcb-a46b-836015db9833",
      "name": "何もしない1",
      "type": "n8n-nodes-base.noOp",
      "position": [
        560,
        1080
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "432a0ae9-451a-4830-b065-8b0593de92ea",
      "name": "gpt-4o-mini3",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        1020,
        1040
      ],
      "parameters": {
        "options": {
          "topP": 1,
          "timeout": 60000,
          "maxTokens": -1,
          "maxRetries": 2,
          "temperature": 0,
          "responseFormat": "text",
          "presencePenalty": 0,
          "frequencyPenalty": 0
        }
      },
      "credentials": {
        "openAiApi": {
          "id": "h597GY4ZJQD47RQd",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "55e00886-b6c1-4f7a-81ae-e8e0d4102cab",
      "name": "付箋4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2200,
        1360
      ],
      "parameters": {
        "color": 6,
        "width": 531,
        "height": 465,
        "content": "## Create HTML Page with TailwindCSS Styling"
      },
      "typeVersion": 1
    },
    {
      "id": "1ed7f754-1279-4511-a085-6ed4e4c36de1",
      "name": "付箋2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        320,
        760
      ],
      "parameters": {
        "width": 450.54438902818094,
        "height": 489.5271576259337,
        "content": "## Parse Topic from Get Request"
      },
      "typeVersion": 1
    },
    {
      "id": "e9dcb568-7f8d-40c5-94cb-6f25386436cf",
      "name": "付箋5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        820,
        760
      ],
      "parameters": {
        "color": 5,
        "width": 380,
        "height": 488,
        "content": "## Improve the Users Topic"
      },
      "typeVersion": 1
    },
    {
      "id": "a7fdaddb-d6fc-4d45-85cc-a372cfb90327",
      "name": "条件分岐2",
      "type": "n8n-nodes-base.if",
      "position": [
        2120,
        1140
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "8e35de0a-ac16-4555-94f4-24e97bdf4b33",
              "operator": {
                "type": "string",
                "operation": "notEmpty",
                "singleValue": true
              },
              "leftValue": "{{ $json.output }}",
              "rightValue": ""
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "57d056b8-7e91-41e4-8b74-dce15847a09b",
      "name": "プロンプト",
      "type": "n8n-nodes-base.set",
      "position": [
        1300,
        2080
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "efbe7563-8502-407e-bfa0-a4a26d8cddd4",
              "name": "user",
              "type": "string",
              "value": "={{ $('Execute Workflow Trigger').item.json.topic }}"
            },
            {
              "id": "05e0b629-bb9f-4010-96a8-10872764705a",
              "name": "system",
              "type": "string",
              "value": "Assistant is a large language model.  Assistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.  Assistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.  Overall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.  "
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "8209cece-fde4-485f-81a1-2d24a6eac474",
      "name": "ワークフロートリガー実行",
      "type": "n8n-nodes-base.executeWorkflowTrigger",
      "position": [
        420,
        2180
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "445e4d15-c2b0-4152-a0f8-d6b93ad5bae6",
      "name": "Telegram2",
      "type": "n8n-nodes-base.telegram",
      "position": [
        860,
        2180
      ],
      "parameters": {
        "text": "=<i>{{ $('Execute Workflow Trigger').item.json.topic }}</i>",
        "chatId": "={{ $json.telegram_chat_id }}",
        "additionalFields": {
          "parse_mode": "HTML",
          "appendAttribution": false
        }
      },
      "credentials": {
        "telegramApi": {
          "id": "BIE64nzfpGeesXUn",
          "name": "Telegram account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "57a5b3ce-5490-4d50-91cc-c36e508eee4d",
      "name": "条件分岐",
      "type": "n8n-nodes-base.if",
      "position": [
        1080,
        2180
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "7e2679dc-c898-415d-a693-c2c1e7259b6a",
              "operator": {
                "type": "string",
                "operation": "notContains"
              },
              "leftValue": "={{ $('Execute Workflow Trigger').item.json.topic }}",
              "rightValue": "undefined"
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "fdf827dc-96b1-4ed3-895b-2a0f5f4c41a3",
      "name": "操作なし、何もしない",
      "type": "n8n-nodes-base.noOp",
      "position": [
        1300,
        2300
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "944aa564-f449-47a6-9d9c-c20a48946ab6",
      "name": "付箋6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        320,
        1940
      ],
      "parameters": {
        "color": 5,
        "width": 1614,
        "height": 623,
        "content": "## 🛠️perplexity_research_tool\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "3806c079-8c08-48b7-a3ed-a26f6d86c67f",
      "name": "Perplexityトピックエージェント",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        1580,
        860
      ],
      "parameters": {
        "text": "=Topic: {{ $json.text }}",
        "options": {
          "systemMessage": "Use the perplexity_research_tool to provide research on the users topic.\n\n"
        },
        "promptType": "define",
        "hasOutputParser": true
      },
      "typeVersion": 1.6
    },
    {
      "id": "cfc55dbb-78e6-47ef-bf55-810311bd37e8",
      "name": "Perplexityリサーチャーを呼び出す",
      "type": "@n8n/n8n-nodes-langchain.toolWorkflow",
      "position": [
        1780,
        1040
      ],
      "parameters": {
        "name": "perplexity_research_tool",
        "fields": {
          "values": [
            {
              "name": "topic",
              "stringValue": "= {{ $json.text }}"
            }
          ]
        },
        "workflowId": {
          "__rl": true,
          "mode": "id",
          "value": "HnqGW0eq5asKfZxf"
        },
        "description": "Call this tool to perform Perplexity research.",
        "jsonSchemaExample": "{\n  \"topic\": \"\"\n}"
      },
      "typeVersion": 1.2
    },
    {
      "id": "5ca35a40-506d-4768-a65c-a331718040bc",
      "name": "何もしない",
      "type": "n8n-nodes-base.noOp",
      "position": [
        2320,
        1140
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "17028837-4706-43f3-8291-f150860caa4c",
      "name": "何もしない2",
      "type": "n8n-nodes-base.noOp",
      "position": [
        1020,
        1700
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "adebf1ad-62d9-4b79-b9a1-4a9395067803",
      "name": "何もしない3",
      "type": "n8n-nodes-base.noOp",
      "position": [
        2000,
        1700
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "fe19e472-3b2b-4c07-b957-fb2afc426998",
      "name": "何もしない4",
      "type": "n8n-nodes-base.noOp",
      "position": [
        1260,
        1080
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "41e23462-a7fa-42a8-adbc-83a662f63f0c",
      "name": "付箋7",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1460,
        760
      ],
      "parameters": {
        "color": 3,
        "width": 480,
        "height": 488,
        "content": "## 🤖Perform Perplexity Research"
      },
      "typeVersion": 1
    },
    {
      "id": "dcc3bd83-1f8c-4000-a832-c2c6e7c157ba",
      "name": "トピックを取得",
      "type": "n8n-nodes-base.set",
      "position": [
        380,
        860
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "57f0eab2-ef1b-408c-82d5-a8c54c4084a6",
              "name": "topic",
              "type": "string",
              "value": "={{ $json.query.topic }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "5572e5b1-0b4c-4e6d-b413-5592aab59571",
      "name": "トピックが存在する場合",
      "type": "n8n-nodes-base.if",
      "position": [
        560,
        860
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "2c565aa5-0d11-47fb-8621-6db592579fa8",
              "operator": {
                "type": "string",
                "operation": "notEmpty",
                "singleValue": true
              },
              "leftValue": "={{ $json.topic }}",
              "rightValue": ""
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "509ee61f-defb-41e8-84cf-70ac5a7448d0",
      "name": "ユーザートピックを改善",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        880,
        860
      ],
      "parameters": {
        "text": "=How would you improve the following prompt as of {{ $now }}, focusing on:\n\n1. Key Concepts & Definitions\n   - Main terminology and foundational concepts\n   - Technical background and context\n\n2. Core Components\n   - Essential elements and their relationships\n   - Critical processes and workflows\n\n3. Practical Applications\n   - Real-world use cases\n   - Implementation considerations\n\n4. Analysis & Insights\n   - Advantages and limitations\n   - Best practices and recommendations\n\nThe final output should be a maximum 2 sentence pure text prompt without any preamble or further explanation.  The final output will be providced to Perplexity as a research prompt.\n\nPrompt to analyze: {{ $json.topic }}",
        "promptType": "define"
      },
      "typeVersion": 1.4
    },
    {
      "id": "69ee4c6a-f6ef-47a2-bd5c-ccaf49ec7c94",
      "name": "トピックの場合",
      "type": "n8n-nodes-base.if",
      "position": [
        1260,
        860
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "329653d4-330f-4b41-96e7-4652c1448902",
              "operator": {
                "type": "string",
                "operation": "notEmpty",
                "singleValue": true
              },
              "leftValue": "={{ $json.text }}",
              "rightValue": ""
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "daa3027b-774d-44b1-b0a5-27008768c65d",
      "name": "チャットID",
      "type": "n8n-nodes-base.set",
      "position": [
        2120,
        880
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "0aa8fcc9-26f4-485c-8fc1-a5c13d0dd279",
              "name": "telegram_chat_id",
              "type": "number",
              "value": 1234567890
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "97f32ad1-f91e-4ccc-8248-d10da823b26a",
      "name": "記事",
      "type": "n8n-nodes-base.set",
      "position": [
        780,
        1480
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "0eb5952b-c133-4b63-8102-d4b8ec7b9b5a",
              "name": "article",
              "type": "object",
              "value": "={{ $json.output.article }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "e223dee3-c79f-421d-b2b8-2f3551a45f71",
      "name": "JSONを抽出",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        440,
        1480
      ],
      "parameters": {
        "text": "=Extract a JSON object from this content: {{ $json.output }}",
        "options": {},
        "promptType": "define",
        "hasOutputParser": true
      },
      "retryOnFail": true,
      "typeVersion": 1.6
    },
    {
      "id": "de8aafb6-b05d-4278-8719-9b3c266fcf3a",
      "name": "記事の場合",
      "type": "n8n-nodes-base.if",
      "position": [
        1020,
        1480
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "329653d4-330f-4b41-96e7-4652c1448902",
              "operator": {
                "type": "string",
                "operation": "notEmpty",
                "singleValue": true
              },
              "leftValue": "{{ $json.article }}",
              "rightValue": ""
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "f9450b58-3b81-4b61-8cbf-2cdf5a2f56a0",
      "name": "HTML記事を作成",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        1360,
        1480
      ],
      "parameters": {
        "text": "=Convert this verbatim into HTML: {{ $json.article.toJsonString() }}\n\n## Formatting Guidelines\n- HTML document must be single line document without tabs or line breaks\n- Use proper HTML tags throughout\n- Do not use these tags:  <html> <body> <style> <head>\n- Use <h1> tag for main title\n- Use <h2> tags for secondary titles\n- Structure with <p> tags for paragraphs\n- Include appropriate spacing\n- Use <blockquote> for direct quotes\n- Maintain consistent formatting\n- Write in clear, professional tone\n- Break up long paragraphs\n- Use engaging subheadings\n- Include transitional phrases\n\nThe final JSON response should contain only the title and content fields, with the content including all HTML formatting.\n{\n\t\"title\": \"the title\",\n\t\"content\": \"the HTML\"\n}",
        "agent": "conversationalAgent",
        "options": {},
        "promptType": "define"
      },
      "retryOnFail": true,
      "typeVersion": 1.6
    },
    {
      "id": "53cbaa6e-6508-48e3-9a5a-58f5bc111c2d",
      "name": "HTMLの場合",
      "type": "n8n-nodes-base.if",
      "position": [
        1780,
        1480
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "329653d4-330f-4b41-96e7-4652c1448902",
              "operator": {
                "type": "string",
                "operation": "notEmpty",
                "singleValue": true
              },
              "leftValue": "={{ $json.output.parseJson().title }}",
              "rightValue": ""
            },
            {
              "id": "0a05f73a-2901-4157-8194-cb81d259ce71",
              "operator": {
                "type": "string",
                "operation": "notEmpty",
                "singleValue": true
              },
              "leftValue": "={{ $json.output.parseJson().content }}",
              "rightValue": ""
            },
            {
              "id": "b61c1d25-a010-42d3-9f9d-fa927c483bae",
              "operator": {
                "name": "filter.operator.equals",
                "type": "string",
                "operation": "equals"
              },
              "leftValue": "",
              "rightValue": ""
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "33e4e2cd-be0c-4fc9-b705-b0e8aac496f9",
      "name": "コンテンツ",
      "type": "n8n-nodes-base.set",
      "position": [
        2000,
        1480
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "af335333-acb8-4c9e-8184-d20cd03e08f6",
              "name": "title",
              "type": "string",
              "value": "={{ $json.output.parseJson().title }}"
            },
            {
              "id": "7fbd2264-c0e1-4bdc-b754-b0faa538879c",
              "name": "content",
              "type": "string",
              "value": "={{ $json.output.parseJson().content }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "8bf36853-8a04-4a0b-8715-e03a8fc8359d",
      "name": "チャットID1",
      "type": "n8n-nodes-base.set",
      "position": [
        660,
        2180
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "0aa8fcc9-26f4-485c-8fc1-a5c13d0dd279",
              "name": "telegram_chat_id",
              "type": "number",
              "value": 1234567890
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "a3fe75d1-8db0-45cb-87f6-76fc27cb59f6",
      "name": "付箋3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        600,
        2080
      ],
      "parameters": {
        "width": 420,
        "height": 340,
        "content": "## Optional"
      },
      "typeVersion": 1
    },
    {
      "id": "22e9edbc-7aa6-4549-ae9f-2c31ad7d0542",
      "name": "付箋8",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2060,
        760
      ],
      "parameters": {
        "width": 420,
        "height": 340,
        "content": "## Optional"
      },
      "typeVersion": 1
    },
    {
      "id": "e62ff7d5-bd54-434c-b048-0dc7cd2c7f9b",
      "name": "成功応答",
      "type": "n8n-nodes-base.set",
      "position": [
        1700,
        2080
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "eb89464a-5919-4962-880c-3f5903e267de",
              "name": "response",
              "type": "string",
              "value": "={{ $('Perplexity').item.json.choices[0].message.content }}"
            }
          ]
        },
        "includeOtherFields": true
      },
      "typeVersion": 3.4
    },
    {
      "id": "c6ba0613-47c6-442f-99e8-0eaec8cacc20",
      "name": "エラー応答",
      "type": "n8n-nodes-base.set",
      "position": [
        1700,
        2300
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "eb89464a-5919-4962-880c-3f5903e267de",
              "name": "response",
              "type": "string",
              "value": "=Error.  No topic provided."
            }
          ]
        },
        "includeOtherFields": true
      },
      "typeVersion": 3.4
    },
    {
      "id": "30d8065c-55d8-4099-abb2-ddb01635129d",
      "name": "Perplexity",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1500,
        2080
      ],
      "parameters": {
        "url": "https://api.perplexity.ai/chat/completions",
        "method": "POST",
        "options": {},
        "jsonBody": "={\n  \"model\": \"llama-3.1-sonar-small-128k-online\",\n  \"messages\": [\n    {\n      \"role\": \"system\",\n      \"content\": \"{{ $json.system }}\"\n    },\n    {\n      \"role\": \"user\",\n      \"content\": \"{{ $json.user }}\"\n    }\n  ],\n  \"max_tokens\": \"4000\",\n  \"temperature\": 0.2,\n  \"top_p\": 0.9,\n  \"return_citations\": true,\n  \"search_domain_filter\": [\n    \"perplexity.ai\"\n  ],\n  \"return_images\": false,\n  \"return_related_questions\": false,\n  \"search_recency_filter\": \"month\",\n  \"top_k\": 0,\n  \"stream\": false,\n  \"presence_penalty\": 0,\n  \"frequency_penalty\": 1\n}",
        "sendBody": true,
        "specifyBody": "json",
        "authentication": "genericCredentialType",
        "genericAuthType": "httpHeaderAuth"
      },
      "credentials": {
        "httpCustomAuth": {
          "id": "vxjFugFpr4Od6gws",
          "name": "Confluence REST API"
        },
        "httpHeaderAuth": {
          "id": "wokWVLDQUDi0DC7I",
          "name": "Perplexity"
        }
      },
      "typeVersion": 4.2
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "9ebf0569-4d9d-4783-b797-e5df2a8e8415",
  "connections": {
    "57a5b3ce-5490-4d50-91cc-c36e508eee4d": {
      "main": [
        [
          {
            "node": "57d056b8-7e91-41e4-8b74-dce15847a09b",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "fdf827dc-96b1-4ed3-895b-2a0f5f4c41a3",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a7fdaddb-d6fc-4d45-85cc-a372cfb90327": {
      "main": [
        [
          {
            "node": "e223dee3-c79f-421d-b2b8-2f3551a45f71",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "5ca35a40-506d-4768-a65c-a331718040bc",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "97f32ad1-f91e-4ccc-8248-d10da823b26a": {
      "main": [
        [
          {
            "node": "de8aafb6-b05d-4278-8719-9b3c266fcf3a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "daa3027b-774d-44b1-b0a5-27008768c65d": {
      "main": [
        [
          {
            "node": "27ee681e-4259-4323-b4fe-629f99cb33d0",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "53cbaa6e-6508-48e3-9a5a-58f5bc111c2d": {
      "main": [
        [
          {
            "node": "33e4e2cd-be0c-4fc9-b705-b0e8aac496f9",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "adebf1ad-62d9-4b79-b9a1-4a9395067803",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "57d056b8-7e91-41e4-8b74-dce15847a09b": {
      "main": [
        [
          {
            "node": "30d8065c-55d8-4099-abb2-ddb01635129d",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "156e51db-03f7-4099-afe8-6f0361c5b497": {
      "main": [
        [
          {
            "node": "dcc3bd83-1f8c-4000-a832-c2c6e7c157ba",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "8bf36853-8a04-4a0b-8715-e03a8fc8359d": {
      "main": [
        [
          {
            "node": "445e4d15-c2b0-4152-a0f8-d6b93ad5bae6",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "33e4e2cd-be0c-4fc9-b705-b0e8aac496f9": {
      "main": [
        [
          {
            "node": "275bce4a-4252-41d4-bcba-174f0c51bf4a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "69ee4c6a-f6ef-47a2-bd5c-ccaf49ec7c94": {
      "main": [
        [
          {
            "node": "3806c079-8c08-48b7-a3ed-a26f6d86c67f",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "fe19e472-3b2b-4c07-b957-fb2afc426998",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "dcc3bd83-1f8c-4000-a832-c2c6e7c157ba": {
      "main": [
        [
          {
            "node": "5572e5b1-0b4c-4e6d-b413-5592aab59571",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "445e4d15-c2b0-4152-a0f8-d6b93ad5bae6": {
      "main": [
        [
          {
            "node": "57a5b3ce-5490-4d50-91cc-c36e508eee4d",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "de8aafb6-b05d-4278-8719-9b3c266fcf3a": {
      "main": [
        [
          {
            "node": "f9450b58-3b81-4b61-8cbf-2cdf5a2f56a0",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "17028837-4706-43f3-8291-f150860caa4c",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "30d8065c-55d8-4099-abb2-ddb01635129d": {
      "main": [
        [
          {
            "node": "e62ff7d5-bd54-434c-b048-0dc7cd2c7f9b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "7fad54e8-5a50-42da-b38d-08f6912615ab": {
      "ai_languageModel": [
        [
          {
            "node": "f9450b58-3b81-4b61-8cbf-2cdf5a2f56a0",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "e223dee3-c79f-421d-b2b8-2f3551a45f71": {
      "main": [
        [
          {
            "node": "97f32ad1-f91e-4ccc-8248-d10da823b26a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "5291869f-3ac6-4ce2-88f3-b572924b6082": {
      "ai_languageModel": [
        [
          {
            "node": "3806c079-8c08-48b7-a3ed-a26f6d86c67f",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "e7d1adac-88aa-4f76-92bf-bbac3aa6386a": {
      "ai_languageModel": [
        [
          {
            "node": "e223dee3-c79f-421d-b2b8-2f3551a45f71",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "432a0ae9-451a-4830-b065-8b0593de92ea": {
      "ai_languageModel": [
        [
          {
            "node": "509ee61f-defb-41e8-84cf-70ac5a7448d0",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "f437d40c-2bf6-43e2-b77b-e5c2cdc35055": {
      "ai_languageModel": [
        [
          {
            "node": "275bce4a-4252-41d4-bcba-174f0c51bf4a",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "275bce4a-4252-41d4-bcba-174f0c51bf4a": {
      "main": [
        [
          {
            "node": "6dd3eba7-e779-4e4a-960e-c5a7b6b3a929",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "5572e5b1-0b4c-4e6d-b413-5592aab59571": {
      "main": [
        [
          {
            "node": "509ee61f-defb-41e8-84cf-70ac5a7448d0",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "cddd9324-8471-4dcb-a46b-836015db9833",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "f9450b58-3b81-4b61-8cbf-2cdf5a2f56a0": {
      "main": [
        [
          {
            "node": "53cbaa6e-6508-48e3-9a5a-58f5bc111c2d",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "509ee61f-defb-41e8-84cf-70ac5a7448d0": {
      "main": [
        [
          {
            "node": "69ee4c6a-f6ef-47a2-bd5c-ccaf49ec7c94",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "3806c079-8c08-48b7-a3ed-a26f6d86c67f": {
      "main": [
        [
          {
            "node": "a7fdaddb-d6fc-4d45-85cc-a372cfb90327",
            "type": "main",
            "index": 0
          },
          {
            "node": "daa3027b-774d-44b1-b0a5-27008768c65d",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "8209cece-fde4-485f-81a1-2d24a6eac474": {
      "main": [
        [
          {
            "node": "8bf36853-8a04-4a0b-8715-e03a8fc8359d",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "fdf827dc-96b1-4ed3-895b-2a0f5f4c41a3": {
      "main": [
        [
          {
            "node": "c6ba0613-47c6-442f-99e8-0eaec8cacc20",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a232f6ca-ad4c-40fa-a641-f0dd83c8f18a": {
      "ai_outputParser": [
        [
          {
            "node": "e223dee3-c79f-421d-b2b8-2f3551a45f71",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "cfc55dbb-78e6-47ef-bf55-810311bd37e8": {
      "ai_tool": [
        [
          {
            "node": "3806c079-8c08-48b7-a3ed-a26f6d86c67f",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    }
  }
}
よくある質問

このワークフローの使い方は?

上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。

このワークフローはどんな場面に適していますか?

上級 - 人工知能, マーケティング

有料ですか?

このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。

ワークフロー情報
難易度
上級
ノード数47
カテゴリー2
ノードタイプ14
難易度説明

上級者向け、16ノード以上の複雑なワークフロー

作成者
Joseph LePage

Joseph LePage

@joe

As an AI Automation consultant based in Canada, I partner with forward-thinking organizations to implement AI solutions that streamline operations and drive growth.

外部リンク
n8n.ioで表示

このワークフローを共有

カテゴリー

カテゴリー: 34