🔐🦙🤖 プライベートなローカルOllamaセルフホストLLMルーター
上級
これはAI分野の自動化ワークフローで、16個のノードを含みます。主にAgent, ChatTrigger, LmChatOllama, MemoryBufferWindowなどのノードを使用、AI技術を活用したスマート自動化を実現。 🔐🦙 プライベートなローカルOllamaセルフホスト+動のLLMルーター
前提条件
- •AIサービスAPIキー(OpenAI、Anthropicなど)
カテゴリー
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "Mub5RZI4PAs6TsSP",
"meta": {
"instanceId": "31e69f7f4a77bf465b805824e303232f0227212ae922d12133a0f96ffeab4fef",
"templateCredsSetupCompleted": true
},
"name": "🔐🦙🤖 Private & Local Ollama Self-Hosted LLM Router",
"tags": [],
"nodes": [
{
"id": "981e858a-cd2b-49cf-9740-a40ac29bba94",
"name": "チャットメッセージ受信時",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
420,
860
],
"webhookId": "3804aa1d-2193-4161-84a1-6f5d1059e092",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "a164103c-66cb-44da-aae7-177231f517b4",
"name": "付箋",
"type": "n8n-nodes-base.stickyNote",
"position": [
-160,
580
],
"parameters": {
"color": 7,
"width": 2360,
"height": 860,
"content": "# 🔐🦙🤖 Private & Local Ollama Self-Hosted + Dynamic LLM Router\n\n\n"
},
"typeVersion": 1
},
{
"id": "2ff955e7-c621-4bee-8baf-91769524f781",
"name": "付箋1",
"type": "n8n-nodes-base.stickyNote",
"position": [
640,
1140
],
"parameters": {
"color": 7,
"width": 360,
"height": 260,
"content": "## Ollama LLM"
},
"typeVersion": 1
},
{
"id": "40f42923-830d-44a9-a311-c006d91691b7",
"name": "付箋2",
"type": "n8n-nodes-base.stickyNote",
"position": [
320,
760
],
"parameters": {
"color": 4,
"width": 280,
"height": 300,
"content": "## 👍Try Me!"
},
"typeVersion": 1
},
{
"id": "c49f5ff5-92a7-4a2d-81b5-51272e7972b4",
"name": "付箋3",
"type": "n8n-nodes-base.stickyNote",
"position": [
740,
720
],
"parameters": {
"color": 3,
"width": 540,
"height": 380,
"content": "## Ollama LLM Router Based on User Prompt\n\n💡This agent chooses the Ollama LLM for the next AI Agent Dynamically based on the users prompt\n\n"
},
"typeVersion": 1
},
{
"id": "72ad69f4-a24f-4df2-978e-71c5d3a63733",
"name": "Ollama Dynamic LLM",
"type": "@n8n/n8n-nodes-langchain.lmChatOllama",
"position": [
1560,
1240
],
"parameters": {
"model": "={{ $('LLM Router').item.json.output.parseJson().llm }}",
"options": {}
},
"credentials": {
"ollamaApi": {
"id": "7aPaLgwpfdMWFYm9",
"name": "Ollama account 127.0.0.1"
}
},
"typeVersion": 1
},
{
"id": "efc2e47a-1d4b-4879-8670-35a34c946bb6",
"name": "LLM Router",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
880,
860
],
"parameters": {
"text": "=Choose the most appropriate LLM model for the following user request. Analyze the task requirements carefully and select the model that will provide optimal performance. Only choose from the provided list.\n\n<user_input>\n{{ $json.chatInput }}\n</user_input>\n",
"options": {
"systemMessage": "<role>\nYou are an expert LLM router that classifies user prompts and selects the most appropriate LLM model based on specific task requirements.\n</role>\n\n<purpose>\nYour task is to analyze user inputs, determine the nature of their request, and select the optimal LLM model that will provide the best performance for their specific needs.\n</purpose>\n\n<classification_rules>\nChoose one of the following LLMs based on their capabilities and the user prompt. You must only select from the provided LLMs:\n\n## Text-Only Models\n- \"qwq\": Specialized in complex reasoning and solving hard problems. Best for: mathematical reasoning, logical puzzles, scientific explanations, and complex problem-solving tasks.\n\n- \"llama3.2\": Multilingual model (3B size) optimized for dialogue, retrieval, and summarization. Best for: conversations in multiple languages, information retrieval, and text summarization.\n\n- \"phi4\": Lightweight model designed for constrained environments. Best for: scenarios requiring low latency, limited computing resources, while maintaining good reasoning capabilities.\n\n## Coding Models\n- \"qwen2.5-coder:14b\": Code-Specific Qwen model, with significant improvements in code generation, code reasoning, and code fixing.\n\n## Vision-Language Models\n- \"granite3.2-vision\": Specialized in document understanding and data extraction. Best for: analyzing charts, tables, diagrams, infographics, and structured visual content.\n\n- \"llama3.2-vision\": General-purpose visual recognition and reasoning. Best for: image description, visual question answering, and general image understanding tasks.\n</classification_rules>\n\n<model_examples>\nExample tasks for each model:\n- qwq: \"Solve this math problem\", \"Explain quantum physics\", \"Debug this logical fallacy\"\n- llama3.2: \"Translate this text to Spanish\", \"Summarize this article\", \"Have a conversation about history\"\n- phi4: \"Generate a quick response\", \"Provide a concise answer\", \"Process this simple request efficiently\"\n- granite3.2-vision: \"Extract data from this chart\", \"Analyze this financial table\", \"Interpret this technical diagram\"\n- llama3.2-vision: \"Describe what's in this image\", \"What can you tell me about this picture?\", \"Answer questions about this photo\"\n</model_examples>\n\n<decision_tree>\n1. Does the prompt include an image?\n - YES → Go to 2\n - NO → Go to 3\n2. Is the image a document, chart, table, or diagram?\n - YES → Use \"granite3.2-vision\"\n - NO → Use \"llama3.2-vision\"\n3. Does the task require complex reasoning or solving difficult problems?\n - YES → Use \"qwq\"\n - NO → Go to 4\n4. Is the task multilingual or requires summarization/retrieval?\n - YES → Use \"llama3.2\"\n - NO → Use \"phi4\" (for efficiency in simple English tasks)\n</decision_tree>\n\n<decision_framework>\nWhen selecting a model, consider:\n1. Task complexity and reasoning requirements\n2. Visual or multimodal components in the request\n3. Language processing needs (summarization, translation, etc.)\n4. Performance constraints (latency, memory limitations)\n5. Required reasoning capabilities\n6. Coding requirements\n</decision_framework>\n\n<examples>\nExample 1:\nUser input: \"Explain quantum computing principles\"\nSelection: \"qwq\"\nReason: \"This request requires deep reasoning and explanation of complex scientific concepts, making QwQ's enhanced reasoning capabilities ideal.\"\n\nExample 2:\nUser input: \"Describe what's in this image of a chart showing quarterly sales\"\nSelection: \"granite3.2-vision\"\nReason: \"This request involves visual document understanding and data extraction from a chart, which is granite-vision's specialty.\"\n\nExample 3:\nUser input: \"Summarize this article about climate change in Spanish\"\nSelection: \"llama3.2\"\nReason: \"This request requires multilingual capabilities and summarization, which are strengths of Llama 3.2.\"\n\nExample 4:\nUser input: \"I need to create a FastAPI endpoint with Python\"\nSelection: \"qwen2.5-coder:14b\"\nReason: \"This request requires code generation, code reasoning, or code fixing.\"\n</examples>\n\n<error_handling>\nIf the user request is unclear or ambiguous, select the model that offers the most general capabilities while noting the uncertainty in your reasoning. If the request appears to contain harmful content or violates ethical guidelines, respond with an appropriate message about being unable to fulfill the request.\n</error_handling>\n\n<output_format>\nRespond with a single JSON object containing:\n{\n \"llm\": \"the name of the selected LLM model\",\n \"reason\": \"a brief, specific explanation of why this model is optimal for the task\"\n}\nAvoid any preamble or further explanation. Remove all ``` or ``json from response.\n</output_format>\n\n\n"
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.7
},
{
"id": "d8b07c67-b177-496f-ba97-2b886c2b6f1e",
"name": "AI Agent with Dynamic LLM",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1660,
860
],
"parameters": {
"text": "={{ $('When chat message received').item.json.chatInput }}",
"options": {
"systemMessage": ""
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "3f005c9c-dd92-4970-b4cf-e105ec75840f",
"name": "Ollama phi4",
"type": "@n8n/n8n-nodes-langchain.lmChatOllama",
"position": [
780,
1240
],
"parameters": {
"model": "phi4:latest",
"options": {
"format": "json"
}
},
"credentials": {
"ollamaApi": {
"id": "7aPaLgwpfdMWFYm9",
"name": "Ollama account 127.0.0.1"
}
},
"typeVersion": 1
},
{
"id": "47f6c3dd-1bad-458c-ade1-ec26f455a95d",
"name": "Router Chat Memory",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
1160,
1240
],
"parameters": {},
"typeVersion": 1.3
},
{
"id": "06b77321-086a-42cf-808a-27d7064403e4",
"name": "Agent Chat Memory",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
1940,
1240
],
"parameters": {
"sessionKey": "={{ $('When chat message received').item.json.sessionId }}",
"sessionIdType": "customKey"
},
"typeVersion": 1.3
},
{
"id": "073ae421-5bbf-4ff9-ae8d-1f515f0b8ed7",
"name": "付箋7",
"type": "n8n-nodes-base.stickyNote",
"position": [
1520,
720
],
"parameters": {
"color": 5,
"width": 540,
"height": 380,
"content": "## AI Agent using Dynamic Local Ollama LLM\n\n💡This agent uses the Ollama LLM based on previous Router agent choice and proceeds to answer the users prompt.\n"
},
"typeVersion": 1
},
{
"id": "2e118ce5-bfa8-4661-99dd-5e72bc7534c6",
"name": "付箋4",
"type": "n8n-nodes-base.stickyNote",
"position": [
1020,
1140
],
"parameters": {
"color": 7,
"width": 360,
"height": 260,
"content": "## Router Chat Memory"
},
"typeVersion": 1
},
{
"id": "92fff699-0e96-4161-b4dd-bcac682d3dab",
"name": "付箋8",
"type": "n8n-nodes-base.stickyNote",
"position": [
1420,
1140
],
"parameters": {
"color": 7,
"width": 360,
"height": 260,
"content": "## Dynamic Ollama LLM"
},
"typeVersion": 1
},
{
"id": "6f8bc049-9440-4863-a8c6-c8cfafde3dda",
"name": "付箋9",
"type": "n8n-nodes-base.stickyNote",
"position": [
1800,
1140
],
"parameters": {
"color": 7,
"width": 360,
"height": 260,
"content": "## Agent Chat Memory"
},
"typeVersion": 1
},
{
"id": "88e0d3ec-108b-4136-86ae-6714f4e4b63b",
"name": "付箋5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-380,
700
],
"parameters": {
"width": 640,
"height": 1020,
"content": "## Who is this for?\nThis workflow template is designed for **AI enthusiasts**, **developers**, and **privacy-conscious users** who want to leverage the power of local large language models (LLMs) without sending data to external services. It's particularly valuable for those running Ollama locally who want intelligent routing between different specialized models.\n\n## What problem is this workflow solving?\nWhen working with multiple local LLMs, each with different strengths and capabilities, it can be challenging to manually select the right model for each specific task. This workflow automatically analyzes user prompts and routes them to the most appropriate specialized Ollama model, ensuring optimal performance without requiring technical knowledge from the end user.\n\n## What this workflow does\nThis intelligent router:\n- Analyzes incoming user prompts to determine the nature of the request\n- Automatically selects the optimal Ollama model from your local collection based on task requirements\n- Routes requests between specialized models for different tasks:\n - Text-only models (qwq, llama3.2, phi4) for various reasoning and conversation tasks\n - Code-specific models (qwen2.5-coder) for programming assistance\n - Vision-capable models (granite3.2-vision, llama3.2-vision) for image analysis\n- Maintains conversation memory for consistent interactions\n- Processes everything locally for complete privacy and data security\n\n## Setup\n1. Ensure you have [Ollama](https://ollama.ai/) installed and running locally\n2. Pull the required models mentioned in the workflow using Ollama CLI (e.g., `ollama pull phi4`)\n3. Configure the Ollama API credentials in n8n (default: http://127.0.0.1:11434)\n4. Activate the workflow and start interacting through the chat interface\n\n## How to customize this workflow to your needs\n- Add or remove models from the router's decision framework based on your specific Ollama collection\n- Adjust the system prompts in the LLM Router to prioritize different model selection criteria\n- Modify the decision tree logic to better suit your specific use cases\n- Add additional preprocessing steps for specialized inputs\n\n\nThis workflow demonstrates how n8n can be used to create sophisticated AI orchestration systems that respect user privacy by keeping everything local while still providing intelligent model selection capabilities.\n"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "c36ec004-11a3-4b0f-b2fd-f529ae6413a2",
"connections": {
"efc2e47a-1d4b-4879-8670-35a34c946bb6": {
"main": [
[
{
"node": "d8b07c67-b177-496f-ba97-2b886c2b6f1e",
"type": "main",
"index": 0
}
]
]
},
"3f005c9c-dd92-4970-b4cf-e105ec75840f": {
"ai_languageModel": [
[
{
"node": "efc2e47a-1d4b-4879-8670-35a34c946bb6",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"06b77321-086a-42cf-808a-27d7064403e4": {
"ai_memory": [
[
{
"node": "d8b07c67-b177-496f-ba97-2b886c2b6f1e",
"type": "ai_memory",
"index": 0
}
]
]
},
"72ad69f4-a24f-4df2-978e-71c5d3a63733": {
"ai_languageModel": [
[
{
"node": "d8b07c67-b177-496f-ba97-2b886c2b6f1e",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"47f6c3dd-1bad-458c-ade1-ec26f455a95d": {
"ai_memory": [
[
{
"node": "efc2e47a-1d4b-4879-8670-35a34c946bb6",
"type": "ai_memory",
"index": 0
}
]
]
},
"981e858a-cd2b-49cf-9740-a40ac29bba94": {
"main": [
[
{
"node": "efc2e47a-1d4b-4879-8670-35a34c946bb6",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級 - 人工知能
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
DeepSeek V3 チャットと R1 推理のクイックスタート
DeepSeek V3チャットとR1リーディングのクイックスタート
Http Request
Agent
Chain Llm
+
Http Request
Agent
Chain Llm
15 ノードJoseph LePage
ビルディングブロック
🔥📈🤖 n8nクリエイターランキング用AIエージェント - 人気ワークフローを検索
🔥📈🤖 n8nクリエイター順位AIエージェント - 人気のワークフローを検索
Set
Sort
Limit
+
Set
Sort
Limit
43 ノードJoseph LePage
その他
⚡📽️究極のAI駆動型YouTube要約と分析チャットボット
⚡📽️ YouTube要約と分析のためのオールインワンAIチャットボット
Set
Code
Merge
+
Set
Code
Merge
29 ノードJoseph LePage
人工知能
🌐🪛Jina.aiウェブスクレイパー搭載のAIエージェントチャットボット
🌐🪛 Jina.aiウェブスクレイパー搭載AIエージェントチャットボット
Agent
Chat Trigger
Lm Chat Open Ai
+
Agent
Chat Trigger
Lm Chat Open Ai
9 ノードJoseph LePage
人工知能
DeepSeek AI エージェント + Telegram + 長期記憶 🧠
DeepSeek AIエージェント + Telegram + 長期記憶 🧠
If
Set
Merge
+
If
Set
Merge
23 ノードJoseph LePage
人工知能
🤖 ドキュメント + Google Drive + Gemini + Qdrant 対応の AI 駆動型 RAG チャットボット
🤖 ドキュメント+Google Drive+Gemini+Qdranto対応のAI駆動型RAGチャットボット
If
Set
Wait
+
If
Set
Wait
50 ノードJoseph LePage
人工知能
ワークフロー情報
難易度
上級
ノード数16
カテゴリー1
ノードタイプ5
作成者
Joseph LePage
@joeAs an AI Automation consultant based in Canada, I partner with forward-thinking organizations to implement AI solutions that streamline operations and drive growth.
外部リンク
n8n.ioで表示 →
このワークフローを共有