エージェント AI Anthropic Opus4 および Sonnet4
中級
これはEngineering, AI分野の自動化ワークフローで、11個のノードを含みます。主にAgent, HttpRequestTool, ToolThink, ChatTrigger, ToolCalculatorなどのノードを使用、AI技術を活用したスマート自動化を実現。 Anthropic AIエージェント:Claude Sonnet 4 と Opus 4、思考機能と web 検索ツール付き
前提条件
- •ターゲットAPIの認証情報が必要な場合あり
- •Anthropic API Key
使用ノード (11)
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "qjLD1os0l5ISHRFO",
"meta": {
"instanceId": "a4bfc93e975ca233ac45ed7c9227d84cf5a2329310525917adaf3312e10d5462",
"templateCredsSetupCompleted": true
},
"name": "Agent AI Anthropic Opus 4 and Sonnet 4",
"tags": [],
"nodes": [
{
"id": "4f01cd9b-16b6-4b6a-a55b-64531e867dcc",
"name": "チャットメッセージ受信時",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
20,
60
],
"webhookId": "a0032740-26d8-491b-93f9-2250906d0e17",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "c0a5e6b1-9c43-4f92-884e-95b1e91ff54a",
"name": "構造化出力パーサー",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
420,
280
],
"parameters": {
"schemaType": "manual",
"inputSchema": "{\n\t\"type\": \"object\",\n\t\"properties\": {\n\t\t\"prompt\": {\n\t\t\t\"type\": \"string\"\n\t\t},\n\t\t\"model\": {\n\t\t\t\"type\": \"string\"\n\t\t}\n\t}\n}"
},
"typeVersion": 1.2
},
{
"id": "e46a6a64-8875-44f0-830e-febebaa10dd7",
"name": "付箋",
"type": "n8n-nodes-base.stickyNote",
"position": [
20,
-180
],
"parameters": {
"width": 840,
"height": 180,
"content": "## Dynamic Model Selector for Optimal AI Responses\n\nThe **New Anthropic Agent Decisioner** is a dynamic, AI-powered routing system that automatically selects the most appropriate large language model (Anthropic Sonnet 4 or Opus 4) to respond to a user's query based on the query’s content and purpose.\n\nThis workflow ensures **dynamic, optimized AI responses** by intelligently routing queries to the best-suited model."
},
"typeVersion": 1
},
{
"id": "0f4208aa-c4f5-44aa-ba43-4c3143751a79",
"name": "AI エージェント",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
600,
60
],
"parameters": {
"text": "={{ $json.output.prompt }}",
"options": {
"systemMessage": "=You have access to a web_search tool that allows you to browse the internet for up-to-date information. Here's how you should operate:\n\n1. Website Information:\nFamiliarize yourself with this information about the website you're assisting. Use this as context for user interactions.\n\n2. Web Search Tool:\nYou have access to a web_search tool that can browse the internet. To use it, write the variable {web_search_question}. The tool will return relevant search results. Set the variable {model} to {{ $json.output.model }}.\n\n3. Handling User Queries:\nWhen a user asks a question, follow these steps:\na) Analyze the query to determine if it's related to the website or requires external information.\nb) If the query is about the website, use the provided website information to answer.\nc) If external information is needed, use the web_search tool to find relevant data.\n\n4. Using web_search:\n- Use web_search for factual, current information that isn't provided in the website info.\n- Formulate clear, concise search queries.\n- If the first search doesn't yield useful results, refine your query and search again.\n- Limit searches to a maximum of three per user query to maintain efficiency.\n\n5. Using Think:\n- Using Think tool to think about something. It will not obtain new information or change the database, but just append the thought to the log. Use it when complex reasoning or some cache memory is needed.\n\n6. Formulating Responses:\n- Begin with information from the website if relevant.\n- Incorporate web search results to provide up-to-date, accurate information.\n- Summarize findings concisely and coherently.\n- If you're unsure or can't find reliable information, be honest about limitations.\n\n7. Ethical Considerations:\n- Respect user privacy. Don't ask for or store personal information.\n- Provide factual information. Avoid speculation or unverified claims.\n- If asked about controversial topics, strive for a balanced, neutral response.\n- Don't engage in or encourage illegal activities.\n\n8. Output Format:\nDo not include your thought process, web searches, or any other tags in the final output.\n"
},
"promptType": "define"
},
"typeVersion": 1.9
},
{
"id": "0e08600f-f35c-408a-9b8a-f886aeea37d6",
"name": "思考",
"type": "@n8n/n8n-nodes-langchain.toolThink",
"position": [
800,
280
],
"parameters": {},
"typeVersion": 1
},
{
"id": "5adf09be-e278-49f0-bb66-d7e3d265b120",
"name": "計算機",
"type": "@n8n/n8n-nodes-langchain.toolCalculator",
"position": [
900,
280
],
"parameters": {},
"typeVersion": 1
},
{
"id": "d5fa04bf-e40b-41d7-9d48-c71cd7ced93f",
"name": "Anthropic ルーティングエージェント",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
240,
60
],
"parameters": {
"options": {
"systemMessage": "=You are a **Routing Agent**.\n\nYour task is to analyze user queries and determine the most appropriate model to handle each specific use case.\n\n## Available Models\n\nYou have access to the following models:\n\n1. **claude-sonnet-4-20250514**\n2. **claude-opus-4-20250514**\n\n## Model Strengths\n\n### 1. claude-sonnet-4-20250514\n- Standard decision-making tasks\n- Real-time workflow routing\n- Data validation and processing\n- Pattern recognition in structured data\n- Routine business logic evaluation\n\n### 2. claude-sonnet-4-20250514\n- Complex multi-factor decision scenarios\n- Advanced data analysis requiring deep reasoning\n- Critical business decisions with high impact\n- Complex pattern recognition in unstructured data\n- Strategic workflow optimization\n\n## Output Format\n\nYour output must always be a valid JSON object in the following format:\n\n```json\n{\n \"prompt\": \"user query goes here\",\n \"model\": \"selected-model-name\"\n}\n```\n\n- The **\"prompt\"** field should contain the exact query to be sent to the selected model.\n- The **\"model\"** field should contain the model name (one of: claude-sonnet-4-20250514, claude-opus-4-20250514).\n\n**Important:** Only return the JSON object. Do not include any explanations or additional text."
},
"hasOutputParser": true
},
"typeVersion": 1.9
},
{
"id": "0f358356-37d4-4693-a694-382a8bc1b20f",
"name": "Sonnet 4 または Opus 4",
"type": "@n8n/n8n-nodes-langchain.lmChatAnthropic",
"position": [
600,
280
],
"parameters": {
"model": {
"__rl": true,
"mode": "id",
"value": "={{ $json.output.model }}"
},
"options": {}
},
"credentials": {
"anthropicApi": {
"id": "NNTZAD0Gmf7lcniq",
"name": "Anthropic account"
}
},
"typeVersion": 1.3
},
{
"id": "c92104a6-9aa4-4a55-84b1-484df25f83ac",
"name": "Sonnet 3.7",
"type": "@n8n/n8n-nodes-langchain.lmChatAnthropic",
"position": [
220,
280
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "claude-3-7-sonnet-20250219",
"cachedResultName": "Claude Sonnet 3.7"
},
"options": {
"maxTokensToSample": 1024
}
},
"credentials": {
"anthropicApi": {
"id": "NNTZAD0Gmf7lcniq",
"name": "Anthropic account"
}
},
"typeVersion": 1.3
},
{
"id": "513642ef-b4d6-46fc-8542-319dd54271f8",
"name": "Simple Memory1",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
720,
280
],
"parameters": {
"sessionKey": "={{ $('When chat message received').item.json.sessionId }}",
"sessionIdType": "customKey"
},
"typeVersion": 1.3
},
{
"id": "6c81dcd9-7faf-4b34-8e78-a471de80fa1e",
"name": "web_search",
"type": "n8n-nodes-base.httpRequestTool",
"position": [
1020,
280
],
"parameters": {
"url": "https://api.anthropic.com/v1/messages",
"method": "POST",
"options": {},
"jsonBody": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('JSON', `{\n \"model\": \"{model}\",\n \"max_tokens\": 1024,\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"{web_search_question}\"\n }\n ],\n \"tools\": [\n {\n \"type\": \"web_search_20250305\",\n \"name\": \"web_search\",\n \"max_uses\": 5\n }\n ]\n}\n`, 'json') }}",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"authentication": "predefinedCredentialType",
"toolDescription": "Use this tool to search on the web",
"headerParameters": {
"parameters": [
{
"name": "anthropic-version",
"value": "=2023-06-01"
},
{
"name": "content-type",
"value": "application/json"
}
]
},
"nodeCredentialType": "anthropicApi"
},
"credentials": {
"anthropicApi": {
"id": "NNTZAD0Gmf7lcniq",
"name": "Anthropic account"
}
},
"typeVersion": 4.2
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "c0947a41-be77-4ac0-89e2-eb8cf04b7c48",
"connections": {
"0e08600f-f35c-408a-9b8a-f886aeea37d6": {
"ai_tool": [
[
{
"node": "0f4208aa-c4f5-44aa-ba43-4c3143751a79",
"type": "ai_tool",
"index": 0
}
]
]
},
"5adf09be-e278-49f0-bb66-d7e3d265b120": {
"ai_tool": [
[
{
"node": "0f4208aa-c4f5-44aa-ba43-4c3143751a79",
"type": "ai_tool",
"index": 0
}
]
]
},
"c92104a6-9aa4-4a55-84b1-484df25f83ac": {
"ai_languageModel": [
[
{
"node": "d5fa04bf-e40b-41d7-9d48-c71cd7ced93f",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"6c81dcd9-7faf-4b34-8e78-a471de80fa1e": {
"ai_tool": [
[
{
"node": "0f4208aa-c4f5-44aa-ba43-4c3143751a79",
"type": "ai_tool",
"index": 0
}
]
]
},
"513642ef-b4d6-46fc-8542-319dd54271f8": {
"ai_memory": [
[
{
"node": "0f4208aa-c4f5-44aa-ba43-4c3143751a79",
"type": "ai_memory",
"index": 0
}
]
]
},
"0f358356-37d4-4693-a694-382a8bc1b20f": {
"ai_languageModel": [
[
{
"node": "0f4208aa-c4f5-44aa-ba43-4c3143751a79",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"d5fa04bf-e40b-41d7-9d48-c71cd7ced93f": {
"main": [
[
{
"node": "0f4208aa-c4f5-44aa-ba43-4c3143751a79",
"type": "main",
"index": 0
}
]
]
},
"c0a5e6b1-9c43-4f92-884e-95b1e91ff54a": {
"ai_outputParser": [
[
{
"node": "d5fa04bf-e40b-41d7-9d48-c71cd7ced93f",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"4f01cd9b-16b6-4b6a-a55b-64531e867dcc": {
"main": [
[
{
"node": "d5fa04bf-e40b-41d7-9d48-c71cd7ced93f",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
中級 - エンジニアリング, 人工知能
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
Claude 3.7 Sonnet AI エージェント(ウェブ検索とサイエンス機能付き)
Anthropicのweb検索と考え機能付きClaude 3.7 Sonnet AIチャットボットエージェント
Agent
Http Request Tool
Tool Think
+
Agent
Http Request Tool
Tool Think
7 ノードDavide
ビルディングブロック
OpenRouterを使用した自動AIルーティング
OpenRouterを活用した動のAIモデルルーティングによるクエリ最適化
Agent
Chat Trigger
Lm Chat Open Router
+
Agent
Chat Trigger
Lm Chat Open Router
7 ノードDavide
エンジニアリング
最初の AI エージェントを構築する – Google Gemini がサポートし、メモリ機能を備えています
🤖 最初のAIエージェントを構築 – Google Geminiとメモリ機能を搭載
Agent
Tool Think
Chat Trigger
+
Agent
Tool Think
Chat Trigger
13 ノードDigiMetaLab
エンジニアリング
データとの対話:テキストをSQLクエリおよび可視化グラフに変換
データと対話:テキストをSQLクエリおよび可視化グラフに変換
If
Set
Merge
+
If
Set
Merge
36 ノードhippolyte-hu
エンジニアリング
評価指標の例:ツールが呼び出されたかどうかを確認
評価指標の例:ツールが呼び出しされているかチェック
Set
Evaluation
Agent
+
Set
Evaluation
Agent
15 ノードDavid Roberts
エンジニアリング
n8n チャットボットに Langflow フローをインポートし、ブランディングカスタマイズを行う
Langflow バックエンドとカスタムブランディングを使用して AI 駆動のウェブサイトチャットボットを作成
Set
Http Request
Chat Trigger
+
Set
Http Request
Chat Trigger
7 ノードDavide
エンジニアリング
ワークフロー情報
難易度
中級
ノード数11
カテゴリー2
ノードタイプ9
作成者
Davide
@n3witaliaFull-stack Web Developer based in Italy specialising in Marketing & AI-powered automations. For business enquiries, send me an email at info@n3w.it or add me on Linkedin.com/in/davideboizza
外部リンク
n8n.ioで表示 →
このワークフローを共有