DeepSeek AI、Qdrantベクトルデータベース、Google Driveを基盤とした自動書籍要約
上級
これはOther, AI分野の自動化ワークフローで、23個のノードを含みます。主にCode, SplitOut, GoogleDrive, HttpRequest, Agentなどのノードを使用、AI技術を活用したスマート自動化を実現。 DeepSeek AI、Qdrantベクトルデータベース、Google Driveを基盤にした自動書籍要約
前提条件
- •Google Drive API認証情報
- •ターゲットAPIの認証情報が必要な場合あり
- •Qdrantサーバー接続情報
使用ノード (23)
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"meta": {
"instanceId": "2d54f61dfd963457efb86a8690aae457934e92fb9e4b8b6490ca74fc37094458",
"templateCredsSetupCompleted": true
},
"nodes": [
{
"id": "3f411206-145f-44d0-a76b-99b5dc1f7123",
"name": "Qdrant ベクトルストア",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
-80,
1060
],
"parameters": {},
"typeVersion": 1
},
{
"id": "be9b15f1-e1c7-4cc7-9a01-a9beb9d7d4b4",
"name": "再帰的文字テキストスプリッター",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
-60,
1720
],
"parameters": {},
"typeVersion": 1
},
{
"id": "d21c69ae-9507-446b-9970-c7a0016d76f7",
"name": "Default Data Loader1",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
80,
1560
],
"parameters": {},
"typeVersion": 1
},
{
"id": "0cad85f2-f81c-4fab-8965-f7183ee3044b",
"name": "AI エージェント",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1740,
1060
],
"parameters": {},
"typeVersion": 1.8
},
{
"id": "86d6218e-d08c-4617-877a-6a7502757553",
"name": "シンプルメモリ",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
1820,
1280
],
"parameters": {},
"typeVersion": 1.3
},
{
"id": "fa8e5386-6be9-4ea2-b457-afcc255dba55",
"name": "コード",
"type": "n8n-nodes-base.code",
"position": [
400,
1060
],
"parameters": {},
"typeVersion": 2
},
{
"id": "31a80013-f03b-412b-bf94-fcf9bc3d702c",
"name": "Google ドライブ (create)",
"type": "n8n-nodes-base.googleDrive",
"position": [
2540,
680
],
"parameters": {},
"typeVersion": 3
},
{
"id": "ddcf1fca-49bf-4a32-9e0e-44379b881146",
"name": "Delete Collection",
"type": "n8n-nodes-base.httpRequest",
"onError": "continueRegularOutput",
"position": [
2440,
1160
],
"parameters": {},
"executeOnce": true,
"typeVersion": 4.2
},
{
"id": "d894616b-4a49-40ef-9b40-ffe88f4d0217",
"name": "質問応答チェーン",
"type": "@n8n/n8n-nodes-langchain.chainRetrievalQa",
"position": [
640,
1060
],
"parameters": {},
"typeVersion": 1.5
},
{
"id": "b754b1d2-bb78-477f-9c9d-d68c099c4b92",
"name": "ベクトルストア Retriever",
"type": "@n8n/n8n-nodes-langchain.retrieverVectorStore",
"position": [
740,
1280
],
"parameters": {},
"typeVersion": 1
},
{
"id": "dccb21d6-1274-480d-8db6-ff4004431ad4",
"name": "Qdrant ベクトルストア1",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
740,
1480
],
"parameters": {},
"typeVersion": 1.1
},
{
"id": "77a47942-fb4b-428d-a026-2a148ddfec3b",
"name": "qdrant_search",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
1800,
1500
],
"parameters": {},
"typeVersion": 1.1
},
{
"id": "e566ea6f-5041-4e19-87db-87649b7068d2",
"name": "埋め込み Cohere",
"type": "@n8n/n8n-nodes-langchain.embeddingsCohere",
"position": [
-120,
1340
],
"parameters": {},
"typeVersion": 1
},
{
"id": "e3bbef67-77da-4734-ba84-813905b9ea4d",
"name": "情報抽出器",
"type": "@n8n/n8n-nodes-langchain.informationExtractor",
"position": [
1120,
1060
],
"parameters": {},
"typeVersion": 1
},
{
"id": "32baf487-c74b-417c-a6c3-dd71bb461ca2",
"name": "分割出力",
"type": "n8n-nodes-base.splitOut",
"position": [
1480,
1060
],
"parameters": {},
"typeVersion": 1
},
{
"id": "d81aff3f-23ce-483f-b902-9de71709b1f6",
"name": "Response",
"type": "n8n-nodes-base.code",
"position": [
2220,
1060
],
"parameters": {},
"typeVersion": 2
},
{
"id": "64c22221-a18d-4442-a62b-3d19ff950e40",
"name": "Google ドライブ",
"type": "n8n-nodes-base.googleDrive",
"position": [
-500,
1060
],
"parameters": {},
"typeVersion": 3
},
{
"id": "3029008c-7bdd-4ab7-871a-60e324e9024f",
"name": "File Created",
"type": "n8n-nodes-base.googleDriveTrigger",
"position": [
-720,
1060
],
"parameters": {},
"typeVersion": 1
},
{
"id": "9bed63eb-3b6c-4506-8570-9ff7afdcd7f8",
"name": "input",
"type": "n8n-nodes-base.code",
"position": [
-300,
1060
],
"parameters": {},
"typeVersion": 2
},
{
"id": "d346f5df-d0e9-4e80-9eee-50b5b7c89ad9",
"name": "DeepSeek Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatDeepSeek",
"position": [
1360,
1360
],
"parameters": {},
"typeVersion": 1
},
{
"id": "93ae3fde-f4f5-43df-ae54-5e44272accd1",
"name": "付箋7",
"type": "n8n-nodes-base.stickyNote",
"position": [
-740,
240
],
"parameters": {
"content": ""
},
"typeVersion": 1
},
{
"id": "57630a9b-c092-41e5-8200-ee087c27c300",
"name": "付箋2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1580,
240
],
"parameters": {
"content": ""
},
"typeVersion": 1
},
{
"id": "7983e95b-30e1-4c45-b913-1fa3e12ca04e",
"name": "Doc",
"type": "n8n-nodes-base.code",
"position": [
2360,
780
],
"parameters": {},
"typeVersion": 2
}
],
"pinData": {},
"connections": {
"7983e95b-30e1-4c45-b913-1fa3e12ca04e": {
"main": [
[
{
"node": "Google Drive (create)",
"type": "main",
"index": 0
}
]
]
},
"Code": {
"main": [
[
{
"node": "Question and Answer Chain",
"type": "main",
"index": 0
}
]
]
},
"9bed63eb-3b6c-4506-8570-9ff7afdcd7f8": {
"main": [
[
{
"node": "Qdrant Vector Store",
"type": "main",
"index": 0
}
]
]
},
"AI Agent": {
"main": [
[
{
"node": "d81aff3f-23ce-483f-b902-9de71709b1f6",
"type": "main",
"index": 0
}
]
]
},
"d81aff3f-23ce-483f-b902-9de71709b1f6": {
"main": [
[
{
"node": "ddcf1fca-49bf-4a32-9e0e-44379b881146",
"type": "main",
"index": 0
},
{
"node": "7983e95b-30e1-4c45-b913-1fa3e12ca04e",
"type": "main",
"index": 0
}
]
]
},
"Split Out": {
"main": [
[
{
"node": "AI Agent",
"type": "main",
"index": 0
}
]
]
},
"3029008c-7bdd-4ab7-871a-60e324e9024f": {
"main": [
[
{
"node": "Google Drive",
"type": "main",
"index": 0
}
]
]
},
"Google Drive": {
"main": [
[
{
"node": "9bed63eb-3b6c-4506-8570-9ff7afdcd7f8",
"type": "main",
"index": 0
}
]
]
},
"Simple Memory": {
"ai_memory": [
[
{
"node": "AI Agent",
"type": "ai_memory",
"index": 0
}
]
]
},
"77a47942-fb4b-428d-a026-2a148ddfec3b": {
"ai_tool": [
[
{
"node": "AI Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"Embeddings Cohere": {
"ai_embedding": [
[
{
"node": "Qdrant Vector Store",
"type": "ai_embedding",
"index": 0
},
{
"node": "Qdrant Vector Store1",
"type": "ai_embedding",
"index": 0
},
{
"node": "77a47942-fb4b-428d-a026-2a148ddfec3b",
"type": "ai_embedding",
"index": 0
}
]
]
},
"d346f5df-d0e9-4e80-9eee-50b5b7c89ad9": {
"ai_languageModel": [
[
{
"node": "AI Agent",
"type": "ai_languageModel",
"index": 0
},
{
"node": "Information Extractor",
"type": "ai_languageModel",
"index": 0
},
{
"node": "Question and Answer Chain",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Qdrant Vector Store": {
"main": [
[
{
"node": "Code",
"type": "main",
"index": 0
}
]
]
},
"d21c69ae-9507-446b-9970-c7a0016d76f7": {
"ai_document": [
[
{
"node": "Qdrant Vector Store",
"type": "ai_document",
"index": 0
}
]
]
},
"Qdrant Vector Store1": {
"ai_vectorStore": [
[
{
"node": "Vector Store Retriever",
"type": "ai_vectorStore",
"index": 0
}
]
]
},
"Information Extractor": {
"main": [
[
{
"node": "Split Out",
"type": "main",
"index": 0
}
]
]
},
"Vector Store Retriever": {
"ai_retriever": [
[
{
"node": "Question and Answer Chain",
"type": "ai_retriever",
"index": 0
}
]
]
},
"Question and Answer Chain": {
"main": [
[
{
"node": "Information Extractor",
"type": "main",
"index": 0
}
]
]
},
"Recursive Character Text Splitter": {
"ai_textSplitter": [
[
{
"node": "d21c69ae-9507-446b-9970-c7a0016d76f7",
"type": "ai_textSplitter",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級 - その他, 人工知能
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
⚡AI驱动のYouTube播放列表と视频摘要与分析v2
AI YouTube播放列表与视频分析チャットボット
If
Set
Code
+
If
Set
Code
72 ノードdmr
その他
私のワークフロー 3
Llama Parser、Gemini LLM、Pinecone DBを基にしたドキュメント分析・チャットボット作成
If
Code
Gmail
+
If
Code
Gmail
36 ノードpavith
その他
AI エージェント レストラン [テンプレート]
🤖 WhatsApp、Instagram、MessengerのAIレストランアシスタント
If
N8n
Set
+
If
N8n
Set
239 ノードAmanda Benks
その他
AIで動くTelegramアシスタント完全入門ガイド(PDF、Brave検索、Google スイート)
Gemini、RAG PDF検索、Google Suiteを用いて多機能Telegramボットを構築
Set
Code
Wait
+
Set
Code
Wait
79 ノードIssam AGGOUR
人工知能
n8nノードの探索(可視化リファレンスライブラリ内)
n8nノードを可視化リファレンスライブラリで探索
If
Ftp
Set
+
If
Ftp
Set
113 ノードI versus AI
その他
試験問題生成
GoogleドキュメントとGeminiを基にしたAI駆動の自動試験問題・解答生成
Code
Google Docs
Http Request
+
Code
Google Docs
Http Request
37 ノードDavide
その他
ワークフロー情報
難易度
上級
ノード数23
カテゴリー2
ノードタイプ16
作成者
Adam Crafts
@adamcraftsAs an experienced AI Agent Builder, I specialize in creating intelligent solutions tailored to enhance automation, streamline operations, and drive innovation. 🛠️ My passion lies in transforming ideas into functional AI agents that deliver tangible results.
外部リンク
n8n.ioで表示 →
このワークフローを共有