アジャンス問題キーワード調査テンプレート
上級
これはMarket Research, Multimodal AI分野の自動化ワークフローで、17個のノードを含みます。主にIf, Set, Code, McpClient, GoogleSheetsなどのノードを使用。 ヒューリスティックキーワード調査ワークフロー:OpenAI、Ahrefs、Googleスプレッドシート
前提条件
- •Google Sheets API認証情報
- •OpenAI API Key
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "5ReWzWNnEuDyt2hZ",
"meta": {
"instanceId": "3d4f6f82ad714311bb383a0cddf651da8753530e5575f46d078b9a29d27557e0",
"templateCredsSetupCompleted": true
},
"name": "Audience Problem Keyword Research Template",
"tags": [],
"nodes": [
{
"id": "4acb69fe-8ac9-4b24-9f45-a5ad8ab5ca19",
"name": "ワークフロー実行時",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-48,
0
],
"parameters": {},
"typeVersion": 1
},
{
"id": "d6cf369d-37cf-4e5a-b518-54bb1517d693",
"name": "データ",
"type": "n8n-nodes-base.set",
"position": [
192,
0
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "6d8b1397-8100-4219-ae03-5477e0da1f0c",
"name": "customer_profile",
"type": "string",
"value": "Mid-30s professional living in a suburban area with a household income of $65,000-80,000. Works in healthcare administration with a stable 9-to-5 schedule and has two school-age children. Values reliability and practicality over flashy features. Vehicle Needs: Seeks a dependable mid-size sedan or small SUV in the $22,000-32,000 range, preferably 1-3 years old. Prioritizes safety ratings, good gas mileage for the daily 20-mile commute, and enough space for car seats and groceries. Brand loyalty leans toward Honda, Toyota, or Mazda based on reputation for longevity. Buying Process: Methodical researcher who spends 6-8 weeks comparing options online before visiting dealerships. Reads consumer reviews, checks reliability ratings, and calculates total cost of ownership. Prefers dealerships with transparent pricing and family-friendly service departments. Typically trades in every 6-7 years when repair costs start climbing or family needs change. This persona represents the backbone of the used car market - practical buyers focused on transportation solutions rather than automotive enthusiasm."
},
{
"id": "1ab9995f-3b6a-407b-8c78-ee2df5079a37",
"name": "ahref_seo_country",
"type": "string",
"value": "us"
},
{
"id": "a7164aa5-6257-4300-a47a-bd79c14de7b1",
"name": "ahref_search_engine",
"type": "string",
"value": "Google"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "491a9c60-95ae-4448-8d46-0ae34c8dcf5d",
"name": "SEOシードキーワード",
"type": "@n8n/n8n-nodes-langchain.openAi",
"position": [
400,
0
],
"parameters": {
"modelId": {
"__rl": true,
"mode": "list",
"value": "o4-mini",
"cachedResultName": "O4-MINI"
},
"options": {},
"messages": {
"values": [
{
"content": "=Output format:\nA list of 50 keywords in a JSON array called \"keywords\". each keyword in the array has an additional element which represents intent. Intent is either informational, navigational, commercial, transactional.\n\nYour Task:\nWhen analyzing the target customer profile, think through what they would actually type into Google, Bing, or other search engines. Consider their pain points, goals, research habits, and decision-making process. Think about both their professional research queries and their more casual, exploratory searches.\n\nkeywords should be short matching typical queries in search engines. It should not be elaborative questions and act as keywords to build upon for further keyword research. Do not return navigational keywords.\n\nTarget customer profile:\n {{ $json.customer_profile }}"
},
{
"role": "system",
"content": "You are a marketing strategist and SEO specialist who works for a fintech marketing agency. You have an MBA in Marketing and many years of experience in keyword research and search behavior analysis, specifically focused on the financial services and investment tools sector.\n\nYour Background:\n- You're analytically-minded and data-obsessed, always looking for patterns in search behavior\n- You have a deep understanding of investor psychology and how financial stress/opportunity drives search queries\n- You've worked with multiple investment platforms, robo-advisors, and financial education companies\n- You're familiar with tools like SEMrush, Ahrefs, Google Keyword Planner, and Answer The Public\n- You understand the seasonal patterns of investment-related searches (earnings seasons, market volatility, tax season)\n\nYour Approach:\n- You think in terms of search intent: informational, navigational, commercial, and transactional queries\n- You consider the customer journey from awareness to consideration to decision\n- You're always thinking about long-tail keywords and semantic search patterns\n- You understand that financial searchers often use specific jargon and technical terms\n- You know that investment-related searches spike during market events and news cycles\n\nYour Personality:\n- Methodical and thorough - you don't just think of obvious keywords\n- Empathetic to user pain points and motivations behind searches\n- Strategic thinker who connects keywords to business outcomes\n- Detail-oriented but also sees the big picture of search landscapes\n- Slightly nerdy about search trends and user behavior data"
}
]
},
"jsonOutput": true
},
"credentials": {
"openAiApi": {
"id": "j4314KXs7eD2lghV",
"name": "OpenAi account"
}
},
"typeVersion": 1.8
},
{
"id": "3eeff8fd-9c13-45ea-8d49-eff7557352fc",
"name": "AEO質問",
"type": "@n8n/n8n-nodes-langchain.openAi",
"position": [
400,
288
],
"parameters": {
"modelId": {
"__rl": true,
"mode": "list",
"value": "o4-mini",
"cachedResultName": "O4-MINI"
},
"options": {},
"messages": {
"values": [
{
"content": "=Output format:\nA list of 50 questions in a JSON array called \"questions\". each question in the array has an additional element which represents intent. Intent is either informational, navigational, commercial, transactional.\n\nYour Task:\nWhen analyzing the target customer profile, think through what questions they would actually ask ChatGPT, Claude, or Google AI Mode. Consider how they would phrase requests for investment advice, research help, analysis, and decision support. Think about their natural conversation patterns, the context they'd provide, and how they'd iterate on responses. Draw from your deep understanding of search behavior patterns from SEMrush and Ahrefs data to predict conversational AI query evolution.\n\nGenerate question examples - focusing on natural conversational queries, multi-turn interactions, and the specific ways this audience leverages AI for investment research and decision-making, backed by your professional marketing intelligence expertise.\n\nTarget customer profile:\n {{ $json.customer_profile }}"
},
{
"role": "system",
"content": "You are an Answer Engine Optimization (AEO) specialist and conversational AI researcher who works for a cutting-edge digital marketing consultancy. You have an MBA in Digital Marketing and many years of experience analyzing search behavior across traditional SEO and emerging conversational AI platforms.\n\nYour Background:\n- You're a certified expert in SEMrush, Ahrefs, and other premium marketing intelligence tools \n- You've managed keyword research campaigns with budgets exceeding $500K annually across fintech and investment sectors\n- You understand the nuances of search intent classification (informational, navigational, commercial, transactional) and how this translates to conversational AI queries \n- You've studied thousands of ChatGPT, Claude, and Google AI Mode conversations across various industries, with particular focus on financial services\n- You're an expert in competitive intelligence, using tools like SEMrush's 3+ billion keyword database and Ahrefs' backlink analysis to understand market landscapes \n- You stay current with LLM capabilities and how users adapt their questioning styles accordingly\n\nYour Tool Expertise:\n- Advanced SEMrush user: Keyword Magic Tool, Topic Research, Market Explorer, and Brand Monitoring\n- Ahrefs power user: Keywords Explorer, Content Explorer, and Site Explorer for competitive analysis \n- Proficient with Answer The Public, SpyFu, and emerging AEO-specific tools\n- Experience with Google Search Console, Google Analytics, and Google Ads Keyword Planner integration\n- Understanding of how traditional keyword metrics (search volume, difficulty, CPC) translate to conversational AI query patterns\n\nYour Approach:\n- You think in terms of natural language queries and conversational flows, but with deep understanding of underlying search intent\n- You understand that AI users ask follow-up questions and iterate on their queries, creating conversation threads rather than isolated searches\n- You recognize that people are more verbose and context-heavy when talking to AI vs. search engines, often providing personal financial situations\n- You know users often ask for comparisons, explanations, and step-by-step guidance from LLMs, especially for complex investment decisions\n\nYour Personality:\n- Curious about human-AI interaction patterns and emerging query behaviors in financial services\n- Forward-thinking about how conversational AI is changing information discovery and purchase decisions\n- Analytical but focused on natural language patterns rather than traditional keyword density metrics\n- Empathetic to how users build trust and rapport with AI assistants for financial advice\n- Excited about the shift from \"search\" to \"ask\" mentality, especially in high-stakes financial decisions\n- Data-driven decision maker who validates hypotheses with actual tool data and user behavior analytics"
}
]
},
"jsonOutput": true
},
"credentials": {
"openAiApi": {
"id": "j4314KXs7eD2lghV",
"name": "OpenAi account"
}
},
"typeVersion": 1.8
},
{
"id": "cc157702-6c5d-44de-a685-a0f15b547b4f",
"name": "キーワード追加",
"type": "n8n-nodes-base.googleSheets",
"position": [
1408,
0
],
"parameters": {
"columns": {
"value": {
"Intent": "={{ $json.intent }}",
"Keyword": "={{ $json.keyword }}"
},
"schema": [
{
"id": "Keyword",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Keyword",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Difficulty",
"type": "string",
"display": true,
"required": false,
"displayName": "Difficulty",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Volumne",
"type": "string",
"display": true,
"required": false,
"displayName": "Volumne",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Intent",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Intent",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"Keyword"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "appendOrUpdate",
"sheetName": {
"__rl": true,
"mode": "list",
"value": "gid=0",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1l5bhQzcG4BNL8mOucjYxCnWgRSJFcxVYj7W0vhCBY9s/edit#gid=0",
"cachedResultName": "Keywords"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI/edit?usp=drivesdk",
"cachedResultName": "Example: SEO/AEO Research Workflow"
},
"authentication": "serviceAccount"
},
"credentials": {
"googleApi": {
"id": "CEWCuoGMaP93jgCn",
"name": "GCP Service account"
}
},
"typeVersion": 4.6
},
{
"id": "2aed19ed-e868-4d3e-b507-6b364e4fe258",
"name": "キーワード一括追加",
"type": "n8n-nodes-base.googleSheets",
"position": [
2688,
208
],
"parameters": {
"columns": {
"value": {
"Keyword": "={{ $json.value.keyword }}",
"Volumne": "={{ $json.value.volume }}",
"Difficulty": "={{ $json.value.difficulty }}"
},
"schema": [
{
"id": "Keyword",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Keyword",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Difficulty",
"type": "string",
"display": true,
"required": false,
"displayName": "Difficulty",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Volumne",
"type": "string",
"display": true,
"required": false,
"displayName": "Volumne",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"Keyword"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "appendOrUpdate",
"sheetName": {
"__rl": true,
"mode": "list",
"value": "gid=0",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1l5bhQzcG4BNL8mOucjYxCnWgRSJFcxVYj7W0vhCBY9s/edit#gid=0",
"cachedResultName": "Keywords"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI/edit?usp=drivesdk",
"cachedResultName": "Example: SEO/AEO Research Workflow"
},
"authentication": "serviceAccount"
},
"credentials": {
"googleApi": {
"id": "CEWCuoGMaP93jgCn",
"name": "GCP Service account"
}
},
"typeVersion": 4.6
},
{
"id": "ff8aae43-e5d5-4569-a3e0-8c79cb168919",
"name": "Parse MCP Keywords JSON",
"type": "n8n-nodes-base.code",
"onError": "continueErrorOutput",
"position": [
1920,
0
],
"parameters": {
"jsCode": "// Input: Stringified JSON with escaped characters like \\n, \\\", etc.\nconst inputString = $input.first().json.result.content[0].text\n\n// Parse the string into a real object\nconst parsedJson = JSON.parse(inputString);\n\n// Since parsedJson is an array, we need to map each item to have a json property\nreturn parsedJson.map(item => ({\n json: item\n}));"
},
"typeVersion": 2
},
{
"id": "9446c8c2-834b-46b0-af10-527f8dd6929a",
"name": "AIキーワードループ処理",
"type": "n8n-nodes-base.splitInBatches",
"position": [
1120,
0
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "62114aa9-c062-451d-b757-7b3af04b11dd",
"name": "関連キーワード生成",
"type": "n8n-nodes-mcp.mcpClient",
"position": [
1664,
0
],
"parameters": {
"toolName": "keyword_generator",
"operation": "executeTool",
"toolParameters": "={\n \"keyword\": \"{{ $json.Keyword }}\",\n \"country\": \"{{ $('Data').item.json.ahref_seo_country }}\",\n \"search_engine\": \"{{ $('Data').item.json.ahref_search_engine }}\"\n}"
},
"credentials": {
"mcpClientApi": {
"id": "IHt3R0V5d8rgP6MK",
"name": "SEO-MCP Client (STDIO)"
}
},
"typeVersion": 1
},
{
"id": "6dfbea3b-6f8c-4889-b455-9ff106870d6f",
"name": "SEO戻り値ループ処理",
"type": "n8n-nodes-base.splitInBatches",
"position": [
2192,
0
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "7ef6f3a6-4659-4538-a223-3d600f3e2555",
"name": "条件分岐",
"type": "n8n-nodes-base.if",
"position": [
2400,
16
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "92f74515-5438-47a9-bd78-5138339d92d8",
"operator": {
"type": "string",
"operation": "notEmpty",
"singleValue": true
},
"leftValue": "={{ $json.label }}",
"rightValue": ""
},
{
"id": "e56e30d7-dfb8-464c-8ebf-7388f17a05cf",
"operator": {
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json.label }}",
"rightValue": "\"question ideas\""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "e7ef3174-8d5f-4dfb-bedf-cb07412da781",
"name": "Parse Keyword JSON",
"type": "n8n-nodes-base.code",
"position": [
832,
0
],
"parameters": {
"jsCode": "return $input.first().json.message.content.keywords"
},
"typeVersion": 2
},
{
"id": "f2a802f8-00d7-46c5-b273-04a1147ae6f7",
"name": "Parse Question JSON",
"type": "n8n-nodes-base.code",
"position": [
832,
288
],
"parameters": {
"jsCode": "return $input.first().json.message.content.questions"
},
"typeVersion": 2
},
{
"id": "2f16fbaf-1bb2-40de-ab86-9a7b7644668a",
"name": "AI質問ループ処理",
"type": "n8n-nodes-base.splitInBatches",
"position": [
1120,
288
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "3c3b6190-6ba7-4adf-bd3b-989242ba9d16",
"name": "AI質問追加",
"type": "n8n-nodes-base.googleSheets",
"position": [
1408,
288
],
"parameters": {
"columns": {
"value": {
"Intent": "={{ $json.intent }}",
"Question": "={{ $json.question }}"
},
"schema": [
{
"id": "Question",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Question",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Intent",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Intent",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"Question"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "appendOrUpdate",
"sheetName": {
"__rl": true,
"mode": "list",
"value": 1575118832,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1l5bhQzcG4BNL8mOucjYxCnWgRSJFcxVYj7W0vhCBY9s/edit#gid=1575118832",
"cachedResultName": "Questions"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI/edit?usp=drivesdk",
"cachedResultName": "Example: SEO/AEO Research Workflow"
},
"authentication": "serviceAccount"
},
"credentials": {
"googleApi": {
"id": "CEWCuoGMaP93jgCn",
"name": "GCP Service account"
}
},
"typeVersion": 4.6
},
{
"id": "1da1245c-1a6d-4920-9535-f03a8b5fa309",
"name": "SEO調査質問追加",
"type": "n8n-nodes-base.googleSheets",
"position": [
2688,
0
],
"parameters": {
"columns": {
"value": {
"Keyword": "={{ $json.value.keyword }}",
"Volumne": "={{ $json.value.volume }}",
"Difficulty": "={{ $json.value.difficulty }}"
},
"schema": [
{
"id": "Keyword",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Keyword",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Difficulty",
"type": "string",
"display": true,
"required": false,
"displayName": "Difficulty",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Volumne",
"type": "string",
"display": true,
"required": false,
"displayName": "Volumne",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"Keyword"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "appendOrUpdate",
"sheetName": {
"__rl": true,
"mode": "list",
"value": 1575118832,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1l5bhQzcG4BNL8mOucjYxCnWgRSJFcxVYj7W0vhCBY9s/edit#gid=1575118832",
"cachedResultName": "Questions"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI/edit?usp=drivesdk",
"cachedResultName": "Example: SEO/AEO Research Workflow"
},
"authentication": "serviceAccount"
},
"credentials": {
"googleApi": {
"id": "CEWCuoGMaP93jgCn",
"name": "GCP Service account"
}
},
"typeVersion": 4.6
},
{
"id": "3d938281-0ed9-4e31-a93c-92ae9349a1dd",
"name": "付箋7",
"type": "n8n-nodes-base.stickyNote",
"position": [
-640,
-224
],
"parameters": {
"width": 460,
"height": 816,
"content": "## Audience Problem Keyword Research Workflow\n### This n8n template generates relevant keywords and questions from a a customer profile. Keyword data is enriched from ahref and everything is stored in a Google Sheet. This is great for market and customer research. Understanding search intent for a well defined audience and gives relevant actionable data in a fraction of time that manual research takes.\n\n### How it works\n* We'll define a customer profile in the 'Data' node\n* We use an OpenAI LLM to fetch relevant search intent as keywords and questions\n* We use an SEO MCP server to fetch keyword data from ahref free tooling\n* The fetched data is stored in the Google sheet\n\n### How to use\n* Make a copy of [this](https://docs.google.com/spreadsheets/d/10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI/edit?usp=sharing) Google Sheet and add it in all Google Sheet nodes\n* Make sure that n8n has read & write permissions for your Google sheet. For my self-hosted n8n instance I was using a [Google Service Account](https://docs.n8n.io/integrations/builtin/credentials/google/service-account/)\n* Add your OpenAI account ([API Key](https://docs.n8n.io/integrations/builtin/credentials/openai/#using-api-key)) in the LLM nodes\n* Add your customer profile in the 'Data' node\n* Add MCP credentials for [seo-mcp](https://github.com/cnych/seo-mcp). Make sure you set the environments correctly:\n```json\n\"command\": \"uvx\",\n\"args\": [\"--python\", \"3.10\", \"seo-mcp\"],\n\"env\": {\n \"CAPSOLVER_API_KEY\": \"CAP-xxxxxx\"\n}\n```\n* Execute workflow :)\n\n### Requirements\n* CapSolver account and API key ([register here](https://dashboard.capsolver.com/passport/register?inviteCode=p-4Y_DjQymvt)) to use [seo-mcp](https://github.com/cnych/seo-mcp)\n* Google Drive account"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "b06b735c-be0f-4a40-b25d-538522244754",
"connections": {
"7ef6f3a6-4659-4538-a223-3d600f3e2555": {
"main": [
[
{
"node": "1da1245c-1a6d-4920-9535-f03a8b5fa309",
"type": "main",
"index": 0
}
],
[
{
"node": "2aed19ed-e868-4d3e-b507-6b364e4fe258",
"type": "main",
"index": 0
}
]
]
},
"d6cf369d-37cf-4e5a-b518-54bb1517d693": {
"main": [
[
{
"node": "3eeff8fd-9c13-45ea-8d49-eff7557352fc",
"type": "main",
"index": 0
},
{
"node": "491a9c60-95ae-4448-8d46-0ae34c8dcf5d",
"type": "main",
"index": 0
}
]
]
},
"cc157702-6c5d-44de-a685-a0f15b547b4f": {
"main": [
[
{
"node": "62114aa9-c062-451d-b757-7b3af04b11dd",
"type": "main",
"index": 0
}
]
]
},
"2aed19ed-e868-4d3e-b507-6b364e4fe258": {
"main": [
[
{
"node": "6dfbea3b-6f8c-4889-b455-9ff106870d6f",
"type": "main",
"index": 0
}
]
]
},
"3eeff8fd-9c13-45ea-8d49-eff7557352fc": {
"main": [
[
{
"node": "f2a802f8-00d7-46c5-b273-04a1147ae6f7",
"type": "main",
"index": 0
}
]
]
},
"3c3b6190-6ba7-4adf-bd3b-989242ba9d16": {
"main": [
[
{
"node": "2f16fbaf-1bb2-40de-ab86-9a7b7644668a",
"type": "main",
"index": 0
}
]
]
},
"491a9c60-95ae-4448-8d46-0ae34c8dcf5d": {
"main": [
[
{
"node": "e7ef3174-8d5f-4dfb-bedf-cb07412da781",
"type": "main",
"index": 0
}
]
]
},
"e7ef3174-8d5f-4dfb-bedf-cb07412da781": {
"main": [
[
{
"node": "9446c8c2-834b-46b0-af10-527f8dd6929a",
"type": "main",
"index": 0
}
]
]
},
"f2a802f8-00d7-46c5-b273-04a1147ae6f7": {
"main": [
[
{
"node": "2f16fbaf-1bb2-40de-ab86-9a7b7644668a",
"type": "main",
"index": 0
}
]
]
},
"9446c8c2-834b-46b0-af10-527f8dd6929a": {
"main": [
[],
[
{
"node": "cc157702-6c5d-44de-a685-a0f15b547b4f",
"type": "main",
"index": 0
}
]
]
},
"2f16fbaf-1bb2-40de-ab86-9a7b7644668a": {
"main": [
[],
[
{
"node": "3c3b6190-6ba7-4adf-bd3b-989242ba9d16",
"type": "main",
"index": 0
}
]
]
},
"ff8aae43-e5d5-4569-a3e0-8c79cb168919": {
"main": [
[
{
"node": "6dfbea3b-6f8c-4889-b455-9ff106870d6f",
"type": "main",
"index": 0
}
],
[
{
"node": "9446c8c2-834b-46b0-af10-527f8dd6929a",
"type": "main",
"index": 0
}
]
]
},
"1da1245c-1a6d-4920-9535-f03a8b5fa309": {
"main": [
[
{
"node": "6dfbea3b-6f8c-4889-b455-9ff106870d6f",
"type": "main",
"index": 0
}
]
]
},
"62114aa9-c062-451d-b757-7b3af04b11dd": {
"main": [
[
{
"node": "ff8aae43-e5d5-4569-a3e0-8c79cb168919",
"type": "main",
"index": 0
}
]
]
},
"6dfbea3b-6f8c-4889-b455-9ff106870d6f": {
"main": [
[
{
"node": "9446c8c2-834b-46b0-af10-527f8dd6929a",
"type": "main",
"index": 0
}
],
[
{
"node": "7ef6f3a6-4659-4538-a223-3d600f3e2555",
"type": "main",
"index": 0
}
]
]
},
"4acb69fe-8ac9-4b24-9f45-a5ad8ab5ca19": {
"main": [
[
{
"node": "d6cf369d-37cf-4e5a-b518-54bb1517d693",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級 - 市場調査, マルチモーダルAI
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
ドメイン分析器ワーキングテンプレート
Ahrefs と Google Sheets を使って マルチドメインの SEO 分析を自動化
Code
Mcp Client
Google Sheets
+
Code
Mcp Client
Google Sheets
12 ノードMichael Muenzer
市場調査
GPT-5 nanoとGoogle Sheetsを使ってウェブサイトをスクレイピングして質問に回答
GPT-5 nanoとGoogle Sheetsでウェブサイトをスクレイピングし、質問に答える
If
Set
Xml
+
If
Set
Xml
44 ノードOriol Seguí
市場調査
Google MapsレビューをGoogleスプレッドシートに同期
SerpApiを利用したGoogle MapsレビューからGoogle表格への同期
If
Set
Code
+
If
Set
Code
22 ノードSerpApi
市場調査
Printifyの自動化 - タイトルと説明を更新 - AlexK1919
GPT-4o-miniによるPrintify向け自動SEO製品タイトル・説明生成
If
Set
Code
+
If
Set
Code
26 ノードAmit Mehta
コンテンツ作成
テンプレートv08/02 - Facebook広告ライブラリをAmazonスクレイピング
Apify スクレイピングを使用して Amazon で Facebook 広告製品を自動検索
If
Set
Code
+
If
Set
Code
24 ノードRichard Besier
市場調査
YouTube 動画に基づく自律ブログ公開
YouTube 動画から ChatGPT、Sheets、Apify、Pexels、WordPress を使用してブログの自主公開
If
Set
Code
+
If
Set
Code
80 ノードOriol Seguí
コンテンツ作成