Firecrawl AI駆動のマーケットインテリジェンスロボット:自動ニュースインサイトの配送
中級
これはMarket Research, Multimodal AI分野の自動化ワークフローで、12個のノードを含みます。主にCode, Wait, Slack, HttpRequest, Agentなどのノードを使用。 OpenAI を使用して TechCrunch の AI ニュースをフィルタリングして Slack に要約する
前提条件
- •Slack Bot Token または Webhook URL
- •ターゲットAPIの認証情報が必要な場合あり
- •OpenAI API Key
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "Ut6jbfsK7IvhGJVL",
"meta": {
"instanceId": "87e85f497d2a9f18665002b06f3ba96bde7b80557a792319a7373c9549c8959f",
"templateId": "4588",
"templateCredsSetupCompleted": true
},
"name": "Firecrawl AI-Powered Market Intelligence Bot: Automated News Insights Delivery",
"tags": [],
"nodes": [
{
"id": "471044c1-cafd-4810-973d-b40c74ef6999",
"name": "日次市場調査トリガー",
"type": "n8n-nodes-base.scheduleTrigger",
"position": [
2512,
784
],
"parameters": {
"rule": {
"interval": [
{
"triggerAtHour": 8
}
]
}
},
"typeVersion": 1.2
},
{
"id": "8f6e97b6-6910-4c6b-8c9a-29a0cf95ac09",
"name": "TechCrunchクロール (FireCrawl)",
"type": "n8n-nodes-base.httpRequest",
"position": [
2704,
784
],
"parameters": {
"url": "https://api.firecrawl.dev/v1/crawl",
"method": "POST",
"options": {},
"jsonBody": "{\n \"url\": \"https://techcrunch.com\",\n \"limit\": 20,\n \"includePaths\": [\"2025/\"],\n \"scrapeOptions\": {\n \"formats\": [\"markdown\"],\n \"onlyMainContent\": true,\n \"parsePDF\": true,\n \"maxAge\": 14400000\n }\n}",
"sendBody": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"genericAuthType": "httpBearerAuth"
},
"typeVersion": 4.2
},
{
"id": "a326e8fd-bfc8-4380-9c66-20481aaa8a6c",
"name": "要約エージェント",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
3328,
784
],
"parameters": {
"text": "=You are an AI research assistant. First, determine if this article is related to artificial intelligence, machine learning, AI companies, or AI technology.\n\nIf the article IS AI-related, provide a summary in 3 bullet points.\nIf the article is NOT AI-related, respond with exactly: \"NOT_AI_RELATED\"\n\nArticle details:\nTitle: {{ $json.title }}\nDescription: {{ $json.description }}\nContent: {{ $json.content }}\n\nFormat for AI articles:\n{{ $json.title }}\n\nSummary:\n- [Bullet point 1]\n- [Bullet point 2] \n- [Bullet point 3]\n\nLink: {{ $json.url }}",
"options": {},
"promptType": "define"
},
"typeVersion": 1.9
},
{
"id": "d8576228-6261-4654-84de-0864e398c22d",
"name": "OpenAI 要約",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
3328,
1008
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "byfe88CyXUHFOXUZ",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "f5965b4a-4ab1-4e5f-868c-2dc11c59fc28",
"name": "Slack に要約を送信",
"type": "n8n-nodes-base.slack",
"position": [
3792,
784
],
"webhookId": "c2e00b18-42bd-49b7-bc4c-05d60633a7c8",
"parameters": {
"text": "=🔍 AI Research Summary:\n{{ $json.output }}",
"select": "channel",
"channelId": {
"__rl": true,
"mode": "name",
"value": "#general"
},
"otherOptions": {},
"authentication": "oAuth2"
},
"executeOnce": false,
"typeVersion": 2.3
},
{
"id": "fb908a45-0faf-4068-9420-8046ab4a8d36",
"name": "待機",
"type": "n8n-nodes-base.wait",
"position": [
2880,
784
],
"webhookId": "b210f38a-da89-4bc5-a1e6-c80f9b89a426",
"parameters": {
"amount": 60
},
"typeVersion": 1.1
},
{
"id": "a89a5bc1-5f76-40b5-aca3-adc380fd4c0d",
"name": "Firecrawl結果受信",
"type": "n8n-nodes-base.httpRequest",
"position": [
3024,
784
],
"parameters": {
"url": "=https://api.firecrawl.dev/v1/crawl/{{$json.id}}",
"options": {},
"authentication": "genericCredentialType",
"genericAuthType": "httpBearerAuth"
},
"credentials": {
"httpBearerAuth": {
"id": "U4MsswmPveLVhYYR",
"name": "Bearer Auth account 4"
}
},
"typeVersion": 4.2
},
{
"id": "5ddeaef9-cd9d-4f55-b82d-1edfce6429df",
"name": "出力分割",
"type": "n8n-nodes-base.code",
"position": [
3184,
784
],
"parameters": {
"jsCode": "// Split crawled articles into individual items for processing\nif (!$json.data || $json.data.length === 0) {\n console.log(\"No data available\");\n return [];\n}\n\nconsole.log(`Processing ${$json.data.length} articles individually`);\n\n// Return each article as a separate n8n item\nreturn $json.data.map(article => ({\n json: {\n title: article.metadata?.title || 'No title',\n url: article.sourceURL || '',\n content: (article.markdown || article.content || '').substring(0, 1000),\n description: article.metadata?.description || '',\n publishDate: article.metadata?.publishDate || ''\n }\n}));"
},
"typeVersion": 2
},
{
"id": "c8cc970e-313e-45c9-bad5-9dd32ccbfee3",
"name": "メッセージフィルタリング",
"type": "n8n-nodes-base.code",
"position": [
3616,
784
],
"parameters": {
"jsCode": "// Process all items at once and filter out NOT_AI_RELATED\nconst filteredItems = [];\n\n$input.all().forEach(item => {\n if (item.json.output && item.json.output.trim() !== 'NOT_AI_RELATED') {\n filteredItems.push(item);\n } else {\n console.log('Filtered out non-AI article');\n }\n});\n\nconsole.log(`Passing ${filteredItems.length} AI articles to Slack`);\nreturn filteredItems;"
},
"typeVersion": 2
},
{
"id": "51e047ef-791d-46cd-abcd-98c2b55104cd",
"name": "付箋",
"type": "n8n-nodes-base.stickyNote",
"position": [
2512,
-384
],
"parameters": {
"width": 944,
"height": 1056,
"content": "# AI-Powered Market Intelligence Bot\n\n## Overview\nThis n8n workflow automatically monitors TechCrunch for AI-related articles, using Firecrawl's AI-powered web scraping to extract clean, structured data and OpenAI to generate actionable summaries delivered directly to your team's Slack channel.\n\n## 🚀 1. Trigger & Scheduling\n\n### Daily Method Research Trigger\n- Initiates automated TechCrunch monitoring on a scheduled basis\n- Default: Daily execution to capture fresh AI industry news and trends\n- Configurable for different frequencies based on market velocity\n- Ensures consistent intelligence gathering without manual intervention\n\n## 🔍 2. Web Scraping & Data Collection\n\n### Firecrawl Integration (HTTP Request Node)\n- Targets TechCrunch specifically: `https://techcrunch.com` (though, can obviously be changed)\n- Crawls a specificed amount of articles with `\"limit\" -- by default this is set to 20, otherwise it would keep scraping. You can remove this limit to scrape all. \n- Focuses on current year content with `\"includePaths\": [\"2025/\"]` In 2026, you'll need to update this.\n- Extracts markdown format for clean, structured content\n- Uses `\"onlyMainContent\": true` to avoid ads and navigation clutter\n- Built-in anti-bot detection bypass and automatic JavaScript rendering\n\n### Code Text/Concat Processing\n- Filters scraped TechCrunch articles for AI relevance\n- AI research assistant determines if articles relate to artificial intelligence, machine learning, AI companies, or AI technology\n- Automatically excludes non-AI content with \"NOT_AI_RELATED\" filtering\n- Processes article titles, descriptions, and full content for comprehensive analysis\n\n## ⏱️ 3. Processing Flow Control\n\n### Wait Node\n- Implements controlled delays to respect TechCrunch's server resources\n- Enough time to receive results back"
},
"typeVersion": 1
},
{
"id": "92923278-85b3-4def-a7e2-8967e55f9004",
"name": "付箋1",
"type": "n8n-nodes-base.stickyNote",
"position": [
4384,
-352
],
"parameters": {
"color": 4,
"width": 1200,
"height": 1184,
"content": "## 🔧 Configuration & Customization\n\n### TechCrunch Scraping Setup\n- Configured to crawl `https://techcrunch.com` with 20 article limit\n- Focuses on current year content with date path filtering\n- Markdown extraction for clean, readable content processing\n- 4-hour cache setting (`\"maxAge\": 14400000`) for efficiency\n\n### AI Relevance Detection\n- Built-in AI research assistant determines article relevance\n- Filters specifically for artificial intelligence, machine learning, AI companies, and AI technology\n- Binary classification: AI-related articles get summarized, others get filtered out\n- Reduces noise by focusing only on AI industry developments\n\n### Slack Integration\n- TechCrunch-specific formatting with source attribution\n- AI-focused message structure with bullet point summaries\n- Integration with Slack threads for AI trend discussions\n- Notification preferences for AI industry updates\n\n## 💡 Best Practices\n\n1. **Monitor TechCrunch Coverage**: Track how much AI content TechCrunch publishes daily\n2. **AI Relevance Accuracy**: Review filtered articles to ensure important AI stories aren't missed\n3. **Summary Quality**: Periodically check that 3-bullet summaries capture key AI insights\n4. **Team Engagement**: Use Slack reactions to identify most valuable AI trends\n5. **Source Verification**: Always include TechCrunch links for fact-checking and deeper reading\n\n## 🔄 Maintenance & Monitoring\n\n- **TechCrunch Access**: Monitor Firecrawl success rates for TechCrunch crawling\n- **AI Classification**: Track accuracy of AI relevance detection\n- **Content Freshness**: Ensure date filtering captures latest AI articles\n- **Delivery Success**: Confirm AI summaries reach Slack channels consistently\n- **Cost Management**: Monitor OpenAI usage for TechCrunch article processing\n\n## 🎯 Business Impact\n\nThis workflow transforms AI market intelligence from manual TechCrunch reading into an automated pipeline that delivers:\n\n- **Daily AI-focused insights** from TechCrunch without manual browsing\n- **Filtered relevance** ensuring only AI industry news reaches your team\n- **Structured summaries** optimized for quick consumption of AI trends\n- **Team awareness** of AI developments through integrated Slack discussions\n- **Source credibility** with direct links to TechCrunch articles\n\nPerfect for AI product teams, tech investors, and executives who need to stay current on artificial intelligence developments without spending time manually browsing TechCrunch."
},
"typeVersion": 1
},
{
"id": "52f22863-78b7-4f12-9d92-5cfe81b4c8c9",
"name": "付箋2",
"type": "n8n-nodes-base.stickyNote",
"position": [
3600,
-352
],
"parameters": {
"color": 5,
"width": 736,
"height": 1056,
"content": "## 🤖 4. AI-Powered Analysis & Summarization\n\n### OpenAI Summarizer (AI Agent)\n- Uses GPT-4o-mini for cost-effective, high-quality analysis\n- AI research assistant prompt determines AI relevance before summarizing\n- For AI-related articles: generates 3 bullet point summaries\n- For non-AI articles: responds with \"NOT_AI_RELATED\" to filter out\n- Processes TechCrunch article title, description, and full content\n- Maintains source attribution with original TechCrunch URLs\n\n### Split Output Processing\n- Distributes processed TechCrunch articles across parallel analysis streams\n- Enables simultaneous processing of multiple articles\n- Optimizes workflow performance for large news batches\n- Maintains data integrity during multi-path processing\n\n## 📊 5. Intelligence Filtering & Quality Control\n\n### Filter Messages Node\n- Removes articles marked as \"NOT_AI_RELATED\" by the AI assistant\n- Applies relevance scoring to prevent information overload\n- Ensures only AI-focused TechCrunch content reaches stakeholders\n- Customizable filtering logic based on AI relevance confidence\n\n## 📤 6. Delivery & Distribution\n\n### Send Summary to Slack\n- Delivers formatted AI intelligence from TechCrunch to specified channels\n- Message format includes: Article title + 3 bullet point summary + TechCrunch source link\n- Supports threaded conversations for team discussions about AI trends\n- Click-through links to original TechCrunch articles for deeper research\n- Rich formatting optimized for mobile and desktop consumptio"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {},
"versionId": "1a74e487-1f09-4046-8c1c-149d0c748911",
"connections": {
"fb908a45-0faf-4068-9420-8046ab4a8d36": {
"main": [
[
{
"node": "a89a5bc1-5f76-40b5-aca3-adc380fd4c0d",
"type": "main",
"index": 0
}
]
]
},
"5ddeaef9-cd9d-4f55-b82d-1edfce6429df": {
"main": [
[
{
"node": "a326e8fd-bfc8-4380-9c66-20481aaa8a6c",
"type": "main",
"index": 0
}
]
]
},
"c8cc970e-313e-45c9-bad5-9dd32ccbfee3": {
"main": [
[
{
"node": "f5965b4a-4ab1-4e5f-868c-2dc11c59fc28",
"type": "main",
"index": 0
}
]
]
},
"a326e8fd-bfc8-4380-9c66-20481aaa8a6c": {
"main": [
[
{
"node": "c8cc970e-313e-45c9-bad5-9dd32ccbfee3",
"type": "main",
"index": 0
}
]
]
},
"d8576228-6261-4654-84de-0864e398c22d": {
"ai_languageModel": [
[
{
"node": "a326e8fd-bfc8-4380-9c66-20481aaa8a6c",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"a89a5bc1-5f76-40b5-aca3-adc380fd4c0d": {
"main": [
[
{
"node": "5ddeaef9-cd9d-4f55-b82d-1edfce6429df",
"type": "main",
"index": 0
}
]
]
},
"8f6e97b6-6910-4c6b-8c9a-29a0cf95ac09": {
"main": [
[
{
"node": "fb908a45-0faf-4068-9420-8046ab4a8d36",
"type": "main",
"index": 0
}
]
]
},
"471044c1-cafd-4810-973d-b40c74ef6999": {
"main": [
[
{
"node": "8f6e97b6-6910-4c6b-8c9a-29a0cf95ac09",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
中級 - 市場調査, マルチモーダルAI
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
SEO記事の模倣(公開版)
Claude AI、Webflow、画像生成を使ってSEO記事を生成して公開
If
Code
Wait
+
If
Code
Wait
30 ノードMarko
コンテンツ作成
AI競合分析によるブランド入力からAEO戦略生成
Firecrawl、Gemini、OpenAIを使用した回答エンジン最適化戦略
Set
Code
Wait
+
Set
Code
Wait
25 ノードHemanth Arety
市場調査
Google Maps、GPT-4、WhatsApp を使用したビジネスパートナー獲得の自動化
Google Maps、GPT-4、WhatsAppを使用したビジネスパートナーの開拓の自動化
If
Set
Code
+
If
Set
Code
64 ノードKhairul Muhtadin
AIチャットボット
Apollo データスクレイピングとタッチアウトフロー 1 ✅
Apollo、AI による解析と計画されたメール.follow-up によるリード生成の自動化
If
Code
Wait
+
If
Code
Wait
39 ノードDeniz
コンテンツ作成
GPT-4o、Sheets、Slackを使った月次Google Ads分析の自動化
GPT-4o、Sheets、Slackを使って月次Google Adsパフォーマンス分析を自動化
Code
Slack
Http Request
+
Code
Slack
Http Request
13 ノードNikan Noorafkan
市場調査
GPT-4、GoogleSearchAPI、Slackを使ったニュース発見と公開の自動化
GPT-4、Google検索API、Slackを使ってニュース発見と公開の自動化
Code
Slack
Http Request
+
Code
Slack
Http Request
14 ノードKalyxi Ai
その他
ワークフロー情報
難易度
中級
ノード数12
カテゴリー2
ノードタイプ8
作成者
Colton Randolph
@crandolphTechnical/B2B content writer & SEO specialist. I love helping people learn and implement technical concepts.
外部リンク
n8n.ioで表示 →
このワークフローを共有