Groq AIとGhostGeniusを使ってLinkedInプロフィールと求人情報を比較
上級
これはMiscellaneous, AI Summarization, Multimodal AI分野の自動化ワークフローで、17個のノードを含みます。主にIf, Set, Code, Merge, Webhookなどのノードを使用。 Groq AI と GhostGenius を使って LinkedIn プロフィールと職位説明のマッチ度を比較する
前提条件
- •HTTP Webhookエンドポイント(n8nが自動生成)
- •ターゲットAPIの認証情報が必要な場合あり
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"meta": {
"instanceId": "834bc6c387a1c56d0622a24b912577f9e6d66c5873f4e6426166054eb488d8fc",
"templateCredsSetupCompleted": true
},
"nodes": [
{
"id": "99132e0e-7083-49c2-822f-2cb10ac289b7",
"name": "Groq Chat Model4",
"type": "@n8n/n8n-nodes-langchain.lmChatGroq",
"position": [
3200,
-360
],
"parameters": {
"model": "moonshotai/kimi-k2-instruct",
"options": {
"temperature": 0.5
}
},
"credentials": {
"groqApi": {
"id": "MObjm2yYpur8db8w",
"name": "Groq account 3"
}
},
"typeVersion": 1
},
{
"id": "09193e72-e51f-450d-bc0a-d6a8367f66ec",
"name": "プロフィール詳細を取得",
"type": "n8n-nodes-base.httpRequest",
"position": [
1780,
-700
],
"parameters": {
"url": "https://api.ghostgenius.fr/v2/profile",
"options": {},
"sendQuery": true,
"authentication": "genericCredentialType",
"genericAuthType": "httpHeaderAuth",
"queryParameters": {
"parameters": [
{
"name": "url",
"value": "={{ $json.body.LinkedIn_CV }}"
}
]
}
},
"credentials": {
"httpBasicAuth": {
"id": "MvNMvU3oWO5seyjn",
"name": "linkedin-proof-of-concept-tool-CV"
},
"httpHeaderAuth": {
"id": "StvB6gMppbwtX437",
"name": "linkedin"
}
},
"typeVersion": 4.2
},
{
"id": "c3ec14e5-245f-4624-890d-a958d1d05f86",
"name": "求人詳細を取得",
"type": "n8n-nodes-base.httpRequest",
"position": [
1780,
-460
],
"parameters": {
"url": "https://api.ghostgenius.fr/v2/job",
"options": {},
"sendQuery": true,
"authentication": "genericCredentialType",
"genericAuthType": "httpHeaderAuth",
"queryParameters": {
"parameters": [
{
"name": "url",
"value": "={{ $json.body.LinkedIn_JD }}"
}
]
}
},
"credentials": {
"httpBasicAuth": {
"id": "MvNMvU3oWO5seyjn",
"name": "linkedin-proof-of-concept-tool-CV"
},
"httpHeaderAuth": {
"id": "StvB6gMppbwtX437",
"name": "linkedin"
}
},
"typeVersion": 4.2
},
{
"id": "8c262246-2fc0-4d89-890f-aa7e7c3cd53f",
"name": "Webhook (フォーム詳細を取得)",
"type": "n8n-nodes-base.webhook",
"position": [
940,
-560
],
"webhookId": "fb607944-5e45-4dab-b805-7d0701e5eaa9",
"parameters": {
"path": "linkedin",
"options": {
"allowedOrigins": "*"
},
"httpMethod": "POST",
"responseMode": "responseNode",
"authentication": "basicAuth"
},
"credentials": {
"httpBasicAuth": {
"id": "MvNMvU3oWO5seyjn",
"name": "linkedin-proof-of-concept-tool-CV"
}
},
"typeVersion": 2
},
{
"id": "760b8a86-745c-47c6-8bea-1a9f8ec11da1",
"name": "履歴書を作成",
"type": "n8n-nodes-base.set",
"position": [
2060,
-700
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "622960b0-c560-43c1-acac-d690fe74c8e4",
"name": "headline",
"type": "string",
"value": "={{ $json.headline }}"
},
{
"id": "301956ad-6219-4d8a-9a00-e45cb4a8c941",
"name": "is_premium",
"type": "boolean",
"value": "={{ $json.is_premium }}"
},
{
"id": "01f8fa3c-75c6-4b57-9950-3d8a95fe1082",
"name": "is_creator",
"type": "boolean",
"value": "={{ $json.is_creator }}"
},
{
"id": "9a17e0b8-958e-40cf-ba05-665f1c5e418e",
"name": "geo",
"type": "object",
"value": "={{ $json.geo }}"
},
{
"id": "b77401d1-9ab1-41e2-870c-f8f43c4e141e",
"name": "is_hiring",
"type": "boolean",
"value": "={{ $json.is_hiring }}"
},
{
"id": "4a394eb9-8073-4e82-b65d-bd234ebec960",
"name": "summary",
"type": "string",
"value": "={{ $json.summary }}"
},
{
"id": "73f33e27-2803-43c3-ac79-c1f9c700bc54",
"name": "languages",
"type": "array",
"value": "={{ $json.languages }}"
},
{
"id": "f1628de0-e39a-4862-9732-7f65bb844216",
"name": "experiences",
"type": "array",
"value": "={{ $json.experiences }}"
},
{
"id": "6289a835-92b9-48a7-bce9-04abab217080",
"name": "skills",
"type": "array",
"value": "={{ $json.skills }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "cdba39fe-360b-4076-b1ba-295a7d8a7425",
"name": "履歴書を統合",
"type": "n8n-nodes-base.aggregate",
"position": [
2340,
-660
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData",
"destinationFieldName": "CV"
},
"typeVersion": 1
},
{
"id": "1e7eb8b8-e895-4022-84a0-ce23cdfee286",
"name": "求人情報を作成",
"type": "n8n-nodes-base.set",
"position": [
2040,
-460
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "8f021bed-f1bb-44ec-b9ec-f5a69f30e25d",
"name": "title",
"type": "string",
"value": "={{ $json.title }}"
},
{
"id": "7438183a-4fac-4b3a-b33a-13872c23bc4b",
"name": "description",
"type": "string",
"value": "={{ $json.description }}"
},
{
"id": "db24b36e-3e74-408f-87f2-f8c2af088167",
"name": "work_remote_allowed",
"type": "boolean",
"value": "={{ $json.work_remote_allowed }}"
},
{
"id": "0f954876-3608-46c3-85ac-c1808b04e056",
"name": "work_place",
"type": "string",
"value": "={{ $json.work_place }}"
},
{
"id": "3c32fe75-1777-49c7-b7c7-003f8a788644",
"name": "listed_at_date",
"type": "string",
"value": "={{ $json.listed_at_date }}"
},
{
"id": "28fc6507-acd1-4e85-a636-4d3b0a6a81e4",
"name": "contract_type",
"type": "string",
"value": "={{ $json.contract_type }}"
},
{
"id": "79d00697-99df-4503-8029-c65c52109cd4",
"name": "company",
"type": "object",
"value": "={{ $json.company }}"
},
{
"id": "374fba18-00d0-4cef-a7dc-018aad986754",
"name": "apply_method.company_apply_url",
"type": "string",
"value": "={{ $json.apply_method.company_apply_url }}"
},
{
"id": "fc5a8073-ea1f-4b36-94bb-6bab1f9203fd",
"name": "hiringTeam",
"type": "string",
"value": "={{ $json.hiringTeam }}"
},
{
"id": "0f3a24dc-7a06-47ef-be43-3aa7b8293609",
"name": "location",
"type": "string",
"value": "={{ $json.location }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "fdeb23f6-f2d7-42cf-b582-2a8dea61d370",
"name": "求人情報を統合",
"type": "n8n-nodes-base.aggregate",
"position": [
2340,
-500
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData",
"destinationFieldName": "JD"
},
"typeVersion": 1
},
{
"id": "f4968f34-f4c4-4480-85bc-52c5d60dfe55",
"name": "ATS比較",
"type": "n8n-nodes-base.set",
"position": [
2940,
-600
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "eb3cb6e0-8bac-476a-ae4f-e76c87a1cf6f",
"name": "CV",
"type": "array",
"value": "={{ $json.CV }}"
},
{
"id": "84f7795e-ba27-4982-b6b4-f40676846153",
"name": "JD",
"type": "array",
"value": "={{ $json.JD }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "4cba76a8-a973-4450-8b82-34ccde324f96",
"name": "マージ2",
"type": "n8n-nodes-base.merge",
"position": [
2660,
-600
],
"parameters": {
"mode": "combine",
"options": {},
"combineBy": "combineAll"
},
"typeVersion": 3
},
{
"id": "bb684bd3-d9a1-4f01-acd7-a82d977c08ad",
"name": "Webhookに返信",
"type": "n8n-nodes-base.respondToWebhook",
"position": [
3980,
-620
],
"parameters": {
"options": {},
"respondWith": "json",
"responseBody": "={{ $json }}"
},
"typeVersion": 1.1
},
{
"id": "56cde4ed-dcaa-4b8b-8432-77304a208867",
"name": "採用担当者確認",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
3260,
-620
],
"parameters": {
"text": "=Job Description JSON:\n{{ $json.JD.toJsonString()}}\n\nCandidate CV JSON:\n{{ $json.CV.toJsonString()}}\n---\n\nOutput ONLY one JSON object that conforms exactly to the Match_Result schema. All arrays must be included, even if empty. All string values must be in double quotes.",
"options": {
"systemMessage": "=You are an expert ATS evaluator, recruitment assistant, and career advisor. \nYour ONLY task is to analyze the given Job Description (JD) JSON and Candidate CV JSON, \ncompare them, and output a structured JSON matching the `Match_Result` schema below.\n\nImportant Output Rules:\n- Return ONLY valid JSON (nothing else, no prose, no markdown).\n- Always include ALL fields in the schema. If no matches, return an empty array for that field.\n- Use canonicalized keyword tokens for \"matched_keywords\", \"missing_keywords_required\", and \"missing_keywords_nice_to_have\".\n- When a candidate’s CV provides evidence for a skill or requirement but phrases it differently, return the canonical keyword **followed by parentheses** with the CV’s actual wording.\n - Example: `\"Quota carrying experience (Achieved 120% of sales targets as SDR)\"`.\n- Reasoning should be factual ATS‑style notes (explain what is matched/missing).\n- Recommendation = one clear action statement.\n- Optimization tips must be **CV-focused, practical actions** the candidate can take.\n\n---\n\nSchema (must always be returned exactly like this, with all keys):\n\n{\n \"status\": \"core_match | good_match | mismatch\",\n \"reasoning\": [\"string\"],\n \"recommendation\": \"string\",\n \"matched_keywords\": [\"string\"],\n \"missing_keywords_required\": [\"string\"],\n \"missing_keywords_nice_to_have\": [\"string\"],\n \"optimization_tips\": [\"string\"],\n \"location_match\" : [\"boolean\"]\n}\n\n---\n\nDefinitions:\n- \"mismatch\": Candidate fails at least 1 bare minimum requirement from JD (e.g., location, required language, quota-carrying).\n- \"core_match\": Candidate meets all minimums but does not exceed them.\n- \"good_match\": Candidate meets all minimums and shows extra strengths (additional experience, languages, certifications, strong metrics).\n\n---"
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.7
},
{
"id": "64629a52-6d90-4068-879b-268001080e7f",
"name": "条件分岐",
"type": "n8n-nodes-base.if",
"position": [
1180,
-560
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "4c3cb62d-3070-4105-8155-d05a08667548",
"operator": {
"type": "string",
"operation": "contains"
},
"leftValue": "={{ $json.body.LinkedIn_CV }}",
"rightValue": "linkedin.com/"
},
{
"id": "ff692e0f-21eb-45fa-96e7-3171588f5e90",
"operator": {
"type": "string",
"operation": "contains"
},
"leftValue": "={{ $json.body.LinkedIn_JD }}",
"rightValue": "linkedin.com/"
}
]
}
},
"typeVersion": 2.2
},
{
"id": "25678030-b9a8-461a-80cb-d26ebd19cc34",
"name": "エラーノード",
"type": "n8n-nodes-base.respondToWebhook",
"position": [
1560,
-280
],
"parameters": {
"options": {},
"respondWith": "json",
"responseBody": "={\n \"thankYouMessage\": \"<div class='flex flex-col items-center justify-center text-center space-y-4 p-4'><h2 class='text-xl font-bold text-red-600'>Invalid URL</h2><p>The URL you submitted appears to be incorrect or inaccessible.</p><p>Please double-check the link and try again.</p></div>\"\n}"
},
"typeVersion": 1.1
},
{
"id": "d02f55f3-adf4-4219-8b13-4b40d46ea773",
"name": "ThankYOUメッセージ",
"type": "n8n-nodes-base.code",
"position": [
3660,
-600
],
"parameters": {
"jsCode": "return items.map(item => {\n let parsed = {};\n\n try {\n // Parse the \"output\" field which is a JSON string\n parsed = JSON.parse(item.json.output);\n } catch (error) {\n parsed = { error: 'Invalid JSON in output field', details: error.message };\n }\n\n function makeList(arr) {\n if (!arr || arr.length === 0) return \"<li>None</li>\";\n return arr.map(x => `<li>${x}</li>`).join(\"\");\n }\n\n const html = `\n <div class=\"flex flex-col items-start justify-start text-left space-y-4 p-4\">\n <h2 class=\"text-xl font-bold\">Analysis Result</h2>\n <p><strong>Status:</strong> ${parsed.status ?? ''}</p>\n <div class=\"text-sm space-y-2\">\n <p><strong>Reasoning:</strong></p>\n <ul class=\"list-disc list-inside text-left\">${makeList(parsed.reasoning)}</ul>\n </div>\n <p><strong>Recommendation:</strong> ${parsed.recommendation ?? ''}</p>\n <div class=\"text-sm space-y-2\">\n <p><strong>Matched Keywords:</strong></p>\n <ul class=\"list-disc list-inside text-left\">${makeList(parsed.matched_keywords)}</ul>\n </div>\n <div class=\"text-sm space-y-2\">\n <p><strong>Missing (Required):</strong></p>\n <ul class=\"list-disc list-inside text-left\">${makeList(parsed.missing_keywords_required)}</ul>\n </div>\n <div class=\"text-sm space-y-2\">\n <p><strong>Missing (Nice to have):</strong></p>\n <ul class=\"list-disc list-inside text-left\">${makeList(parsed.missing_keywords_nice_to_have)}</ul>\n </div>\n <div class=\"text-sm space-y-2\">\n <p><strong>Optimization Tips:</strong></p>\n <ul class=\"list-disc list-inside text-left\">${makeList(parsed.optimization_tips)}</ul>\n </div>\n </div>`;\n\n return {\n json: {\n thankYouMessage: html\n }\n };\n});"
},
"typeVersion": 2
},
{
"id": "d8f8bbeb-3199-43e2-8375-846d657b5ba5",
"name": "ワークフロー説明 (付箋)1",
"type": "n8n-nodes-base.stickyNote",
"position": [
420,
-1160
],
"parameters": {
"width": 440,
"height": 920,
"content": "## 📌 Workflow Description\n\nThis workflow automates **CV vs JD matching** using LinkedIn profile data, job descriptions, and an AI recruiter check. It evaluates a candidate’s CV against a job posting, highlights strengths and gaps, and provides an ATS-style analysis report.\n\n### ✅ Who’s it for\nRecruiters, hiring managers, and job seekers who want an **AI-powered Applicant Tracking System (ATS)** analysis to quickly evaluate the fit between a CV and a job description.\n\n### ⚙️ How it works\n1. The **Webhook** captures the LinkedIn CV and JD URLs.\n2. Two **HTTP Request nodes** fetch profile and job description details.\n3. The workflow **builds structured CV and JD JSON objects** using Set + Aggregate nodes.\n4. A **Merge + ATS Compare** step aligns the CV and JD.\n5. The **Recruiter Check (LLM)** analyzes the alignment using a defined schema.\n6. The **Code node** cleans this JSON, formats it, and generates the ready-to-render HTML summary.\n7. Finally, the **Respond to Webhook** node sends the result back.\n\n### 🔧 Requirements\n* A valid LinkedIn CV/JD scraper API (via GhostGenius here).\n* A Groq account for the LLM step (no keys are hardcoded).\n* An n8n instance (cloud or self-hosted).\n\n### 🎨 How to Customize\n* Adjust the LLM prompt for more specific ATS scoring rules.\n* Change the Code node template to reformat results in plain text, Slack blocks, or PDF.\n* Add integrations (Slack, Gmail, Notion) to automatically distribute candidate/job match reports.\n\n⚠️ Credential Reminder: Do not hardcode sensitive API keys in nodes—always store them securely in n8n credentials."
},
"typeVersion": 1
},
{
"id": "2dc1eb5a-c00f-4039-a317-8cea1880aa68",
"name": "分析結果 (付箋)",
"type": "n8n-nodes-base.stickyNote",
"position": [
4240,
-1080
],
"parameters": {
"width": 920,
"height": 940,
"content": "## 📝 Analysis Result\n\n**Status:** mismatch\n\n### Reasoning\n- Candidate location is United States; JD explicitly requires residence in the Netherlands.\n- JD mandates Dutch language fluency; languages array is empty in CV.\n- JD asks for 3-5 years closing sales experience; CV shows 12+ years (exceeds upper bound but not disqualifying).\n\n**Recommendation:** Do not proceed with application until candidate can relocate to the Netherlands and demonstrate Dutch fluency.\n\n### ✅ Matched Keywords\n- Quota carrying experience (10x President’s Club)\n- Closing Sales experience (Account Executive III)\n- Sales experience (Enterprise Account Executive)\n- Consultative selling (Growth Consultant @ HubSpot)\n- Pipeline management (accurate forecasting implied by President’s Club)\n- High performer (10x President’s Club)\n\n### ❌ Missing (Required)\n- Dutch fluency\n- Netherlands residence\n\n### ⚠️ Missing (Nice to have)\n- Mid-market sales experience\n- Inside sales model\n- Inbound selling strategies\n- SMB focus\n\n### 💡 Optimization Tips\n- Add Dutch language proficiency and CEFR level in the Languages section.\n- Change geo location to Amsterdam, Netherlands.\n- Insert a bullet under each sales role specifying inbound/inside sales and mid-market/SMB focus.\n- Include quantified mid-market quota achievements (ARR, number of deals)."
},
"typeVersion": 1
}
],
"pinData": {},
"connections": {
"64629a52-6d90-4068-879b-268001080e7f": {
"main": [
[
{
"node": "09193e72-e51f-450d-bc0a-d6a8367f66ec",
"type": "main",
"index": 0
},
{
"node": "c3ec14e5-245f-4624-890d-a958d1d05f86",
"type": "main",
"index": 0
}
],
[
{
"node": "25678030-b9a8-461a-80cb-d26ebd19cc34",
"type": "main",
"index": 0
}
]
]
},
"4cba76a8-a973-4450-8b82-34ccde324f96": {
"main": [
[
{
"node": "f4968f34-f4c4-4480-85bc-52c5d60dfe55",
"type": "main",
"index": 0
}
]
]
},
"760b8a86-745c-47c6-8bea-1a9f8ec11da1": {
"main": [
[
{
"node": "cdba39fe-360b-4076-b1ba-295a7d8a7425",
"type": "main",
"index": 0
}
]
]
},
"1e7eb8b8-e895-4022-84a0-ce23cdfee286": {
"main": [
[
{
"node": "fdeb23f6-f2d7-42cf-b582-2a8dea61d370",
"type": "main",
"index": 0
}
]
]
},
"cdba39fe-360b-4076-b1ba-295a7d8a7425": {
"main": [
[
{
"node": "4cba76a8-a973-4450-8b82-34ccde324f96",
"type": "main",
"index": 0
}
]
]
},
"fdeb23f6-f2d7-42cf-b582-2a8dea61d370": {
"main": [
[
{
"node": "4cba76a8-a973-4450-8b82-34ccde324f96",
"type": "main",
"index": 1
}
]
]
},
"25678030-b9a8-461a-80cb-d26ebd19cc34": {
"main": [
[]
]
},
"f4968f34-f4c4-4480-85bc-52c5d60dfe55": {
"main": [
[
{
"node": "56cde4ed-dcaa-4b8b-8432-77304a208867",
"type": "main",
"index": 0
}
]
]
},
"56cde4ed-dcaa-4b8b-8432-77304a208867": {
"main": [
[
{
"node": "d02f55f3-adf4-4219-8b13-4b40d46ea773",
"type": "main",
"index": 0
}
]
]
},
"99132e0e-7083-49c2-822f-2cb10ac289b7": {
"ai_languageModel": [
[
{
"node": "56cde4ed-dcaa-4b8b-8432-77304a208867",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"d02f55f3-adf4-4219-8b13-4b40d46ea773": {
"main": [
[
{
"node": "bb684bd3-d9a1-4f01-acd7-a82d977c08ad",
"type": "main",
"index": 0
}
]
]
},
"c3ec14e5-245f-4624-890d-a958d1d05f86": {
"main": [
[
{
"node": "1e7eb8b8-e895-4022-84a0-ce23cdfee286",
"type": "main",
"index": 0
}
]
]
},
"09193e72-e51f-450d-bc0a-d6a8367f66ec": {
"main": [
[
{
"node": "760b8a86-745c-47c6-8bea-1a9f8ec11da1",
"type": "main",
"index": 0
}
]
]
},
"8c262246-2fc0-4d89-890f-aa7e7c3cd53f": {
"main": [
[
{
"node": "64629a52-6d90-4068-879b-268001080e7f",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級 - その他, AI要約, マルチモーダルAI
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
競合他社コンテンツギャップ分析ツール:構題マッピングの自動化
Gemini AI、Apify、Google Sheetsを使用して競合企業のコンテンツギャップを分析
If
Set
Code
+
If
Set
Code
30 ノードMychel Garzon
その他
毎日の WhatsApp グループ スマート分析:GPT-4.1 による分析と音声メッセージの transcrição
毎日の WhatsApp グループ インタラクティブ分析:GPT-4.1 分析と音声メッセージ文字起こし
If
Set
Code
+
If
Set
Code
52 ノードDaniel Lianes
その他
Mistral AI OCRとJigsawStackを使用して、フロアプランデータを分類および抽出
Mistral AI OCR と JigsawStack を使用して、建築スケジュールデータを分類し、抽出する
If
Code
Switch
+
If
Code
Switch
24 ノードStephan Koning
その他
AIを使用してウイルスのなYouTube動画を検出し、メールレポートを送信
AIを使ってウイルスのなYouTube動画を検出し、メールレポートを送信する
Set
Code
Sort
+
Set
Code
Sort
26 ノードgclbck
その他
AIを活用した会議調査とデイリーアジェンダ(Googleカレンダー、Attio CRM、Slack)
AIを活用した会議調査とデイリーアジェンダ:Googleカレンダー、Attio CRM、Slackを使用
If
Set
Code
+
If
Set
Code
30 ノードHarry Siggins
AI要約
GitLab コードレビューテンプレート
Gemini AIとJIRAコンテキストを使用したGitLabマージンリクエストコードレビューの自動化
If
Set
Code
+
If
Set
Code
41 ノードEvgeny Agronsky
AI要約
ワークフロー情報
難易度
上級
ノード数17
カテゴリー3
ノードタイプ11
作成者
Stephan Koning
@reklaimAccount Executive by day , Noco builder for fun at night and always a proud dad of Togo the Samoyed.
外部リンク
n8n.ioで表示 →
このワークフローを共有