AI駆動の文書処理・整理システム、Gemini、VLM Run、Googleスプレッドシートを統合

中級

これはContent Creation, Multimodal AI分野の自動化ワークフローで、14個のノードを含みます。主にWebhook, GoogleDrive, Agent, HttpRequestTool, GoogleSheetsToolなどのノードを使用。 AI駆動の文書処理・整理システム、Gemini、VLM Run、Googleスプレッドシートを統合

前提条件
  • HTTP Webhookエンドポイント(n8nが自動生成)
  • Google Drive API認証情報
  • ターゲットAPIの認証情報が必要な場合あり
  • Google Sheets API認証情報
  • OpenAI API Key
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
  "meta": {
    "instanceId": "96d35e452e0d9a182973416b7532cfc5643239aaaa764a5bf74d52ca84f4a35c",
    "templateCredsSetupCompleted": true
  },
  "nodes": [
    {
      "id": "038c1631-168a-4539-a4ba-66bb15213f9a",
      "name": "🧾 ワークフローの概要",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1952,
        -496
      ],
      "parameters": {
        "color": 7,
        "width": 480,
        "height": 856,
        "content": "## 🧾 AI Data Extraction Workflow\n\n**Overview:**\nUploads land in Google Drive → Gemini labels doc type → VLM Run extracts structured fields with OCR and layout parsing → AI Agent maps keys and saves to the right Google Sheet. Change the prompt only to handle any new document type.\n\n\n**Key Features:**\n- 📁 Auto-monitors a Drive folder\n- 🔧 VLM Run powered extraction for receipts, resumes, claims, physician orders, blueprints, and any custom type\n- 🧠 AI Agent reads a single master index sheet to find the target sheet ID by doc type\n- 🗂️ If a sheet has no headers the Agent creates them from the JSON keys then appends values\n- 📝 Prompt controls the schema and mapping logic so editing the prompt updates columns and handling\n\n\n**Perfect for:**\n- Expense tracking and audits\n- Healthcare and insurance intake\n- Resume and HR pipelines\n- Construction records and compliance\n\n\n**Requirements:**\n- VLM Run API\n- Google Gemini API\n- Google Drive and Sheets OAuth2\n- n8n AI Agent with prompt that defines types, headers, and key mapping\n- A Google Sheet with Columns `Document_Name`, `Spreadsheet_ID` for locating the document storing sheet\n"
      },
      "typeVersion": 1
    },
    {
      "id": "7ff45131-2c0b-4a9c-87e4-3e933b8ede3e",
      "name": "📁 入力ドキュメントの処理",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1408,
        -496
      ],
      "parameters": {
        "color": 7,
        "width": 480,
        "height": 856,
        "content": "## 📁 Input Processing\n\n**Monitors & downloads receipt files from Google Drive.**\n\n**Process:**\n1. Watches designated Drive folder\n2. Auto-triggers on new uploads\n3. Downloads files for AI processing\n\n**Supported Formats:**\n- Images (JPG, PNG, WEBP)\n- PDF documents\n- Mobile camera uploads\n- Scanned receipts"
      },
      "typeVersion": 1
    },
    {
      "id": "ba119800-f50b-4802-9cde-2815f6671742",
      "name": "🤖 AIによる抽出",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -864,
        -496
      ],
      "parameters": {
        "width": 784,
        "height": 856,
        "content": "## 🤖 VLM Run Execute Agent\n\n**Uses Gemini to detect document type and VLM Run Execute Agent node to extract structured data from images or PDFs.**\n\n\n**Extracts:**\n* Important values according to the document type\n\n\n**Features:**\n* Handles poor quality images\n* Supports receipts, resumes, claims, physician orders, construction blueprints, and other generic documents\n* OCR text recognition with layout parsing and precision"
      },
      "typeVersion": 1
    },
    {
      "id": "4f12e813-9f9d-4eed-b87c-b2b2099318b6",
      "name": "📊 データの保管",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -16,
        -496
      ],
      "parameters": {
        "color": 7,
        "width": 468,
        "height": 856,
        "content": "## 📊 Data Storage\n\n**Structures and stores extracted data in Google Sheets according to document type automatically.**\n\n\n**Features:**\n- Clean, organized format\n- Centralized database for all kind of files\n- Auto-appends new entries or headers for any type of document according to the prompt\n- Analysis-ready data\n\n\n**Document Types (can be modified easily by changing the prompt & updating the Sheet which contains the IDs):**\n- Resume\n- Receipt\n- Construction Blueprint\n- Physician Order\n- Healthcare Claims"
      },
      "typeVersion": 1
    },
    {
      "id": "1439fa01-eb2e-4e60-8b32-9b1808ea7caf",
      "name": "アップロードの監視",
      "type": "n8n-nodes-base.googleDriveTrigger",
      "notes": "Monitors Google Drive folder for new receipt uploads and triggers processing automatically.",
      "position": [
        -1344,
        16
      ],
      "parameters": {
        "event": "fileCreated",
        "options": {},
        "pollTimes": {
          "item": [
            {
              "mode": "everyMinute"
            }
          ]
        },
        "triggerOn": "specificFolder",
        "folderToWatch": {
          "__rl": true,
          "mode": "list",
          "value": "1E8rvLEWKguorMT36yCD1jY78G0u8g6g7",
          "cachedResultUrl": "https://drive.google.com/drive/folders/1E8rvLEWKguorMT36yCD1jY78G0u8g6g7",
          "cachedResultName": "test_data"
        }
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "oCzY5bzObKMMfjpu",
          "name": "Google Drive account 3"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "dc267443-93f4-40b2-a1cb-fca4137fd76a",
      "name": "ファイルのダウンロード",
      "type": "n8n-nodes-base.googleDrive",
      "notes": "Downloads receipt files from Google Drive for AI processing.",
      "position": [
        -1104,
        16
      ],
      "parameters": {
        "fileId": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $json.id }}"
        },
        "options": {
          "binaryPropertyName": "data"
        },
        "operation": "download"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "oCzY5bzObKMMfjpu",
          "name": "Google Drive account 3"
        }
      },
      "typeVersion": 3
    },
    {
      "id": "968205e6-d178-4fca-9c21-b91c5070402d",
      "name": "OpenAI チャットモデル",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        16,
        160
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4.1",
          "cachedResultName": "gpt-4.1"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "WqqkexJ7QGbexoAz",
          "name": "OpenAi account 4"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "c8a157b6-381f-4768-bbc6-419621cd1270",
      "name": "行を追加",
      "type": "n8n-nodes-base.httpRequestTool",
      "position": [
        320,
        160
      ],
      "parameters": {
        "url": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('URL', `must match this format:\nhttps://sheets.googleapis.com/v4/spreadsheets/1g60FR2dAZ6OtJ1NM06le85agaxCWOW11TbxQj45S2Ug/values/Sheet1!A:Z:append`, 'string') }}",
        "method": "POST",
        "options": {},
        "jsonBody": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('JSON', `must match this format:\n{ \"majorDimension\": \"ROWS\",   \"values\": [     [\"val1\", \"val2\"]   ] }`, 'json') }}",
        "sendBody": true,
        "sendQuery": true,
        "sendHeaders": true,
        "specifyBody": "json",
        "authentication": "predefinedCredentialType",
        "queryParameters": {
          "parameters": [
            {
              "name": "valueInputOption",
              "value": "RAW"
            },
            {
              "name": "insertDataOption",
              "value": "INSERT_ROWS"
            },
            {
              "name": "includeValuesInResponse",
              "value": "true"
            }
          ]
        },
        "headerParameters": {
          "parameters": [
            {
              "name": "Content-Type",
              "value": "application/json"
            }
          ]
        },
        "nodeCredentialType": "googleSheetsOAuth2Api"
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "lxV2oXYXJq9hllrs",
          "name": "Google Sheets account 5"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "63064bdd-7eaa-44be-853d-98aea26fa69b",
      "name": "スプレッドシートから行を取得",
      "type": "n8n-nodes-base.googleSheetsTool",
      "position": [
        176,
        160
      ],
      "parameters": {
        "options": {},
        "sheetName": {
          "__rl": true,
          "mode": "name",
          "value": "Sheet1"
        },
        "documentId": {
          "__rl": true,
          "mode": "id",
          "value": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('Document', ``, 'string') }}"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "lxV2oXYXJq9hllrs",
          "name": "Google Sheets account 5"
        }
      },
      "typeVersion": 4.7
    },
    {
      "id": "65b1be08-0bf4-4511-852f-7fbe230c076d",
      "name": "VLM Runでデータ抽出",
      "type": "@vlm-run/n8n-nodes-vlmrun.vlmRun",
      "position": [
        -448,
        16
      ],
      "parameters": {
        "file": "data2",
        "operation": "executeAgent",
        "agentPrompt": "=check the {{ $json.content.parts[0].text }} document and extract data according to the document type.",
        "agentCallbackUrl": "https://playground.attensys.ai/webhook/auto"
      },
      "credentials": {
        "vlmRunApi": {
          "id": "7JF2kdNzjhKZsHGg",
          "name": "VLM Run account 2"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "188e6cd1-9d9f-4c33-9731-104f61a02fdc",
      "name": "抽出データの受信",
      "type": "n8n-nodes-base.webhook",
      "position": [
        -224,
        16
      ],
      "webhookId": "cf8e4d73-56de-4ac6-8ed8-28bfa20e7957",
      "parameters": {
        "path": "auto",
        "options": {},
        "httpMethod": "POST"
      },
      "typeVersion": 2.1
    },
    {
      "id": "a9831503-4094-486b-a0f9-2275b7554a7a",
      "name": "ドキュメントタイプの確認",
      "type": "@n8n/n8n-nodes-langchain.googleGemini",
      "position": [
        -816,
        16
      ],
      "parameters": {
        "text": "analyze the document and reply the document type only",
        "modelId": {
          "__rl": true,
          "mode": "list",
          "value": "models/gemini-2.5-flash",
          "cachedResultName": "models/gemini-2.5-flash"
        },
        "options": {},
        "resource": "document",
        "inputType": "binary"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "f24qXJq84ChbMZGo",
          "name": "Google Gemini(PaLM) Api account 3"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "4d92bf87-046e-4df9-bff8-dae23deec32f",
      "name": "AIエージェントによる動的な保管",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        96,
        16
      ],
      "parameters": {
        "text": "=JSON Input: {{ JSON.stringify($('Receives Extracted Data').item.json.body) }}",
        "options": {
          "maxIterations": 10,
          "systemMessage": "Complete the following tasks using the google sheet tools for the provided json and do not suggest user how to do, complete it yourself using the available tools and just reply necessary failures or success:\n\nFirst analyze the document(ie. Physician order, claims processing, construction blueprint etc) and search the spreadsheet with ID: '1-e3vUMW_xJ8Gqj7Ifp7hlESl726tnHaqqFf9DYc_1kE' with get rows if its first column has similar document type.\nIf yes, grab the spreadsheet ID of that document from the second column of the same spreadsheet then simply append the necessary values from the json there as a new row using append row http node(make sure to map the keys accordingly as the header name from the default json keys). If no header was found in the spreadsheet use append row http tool  to create one(make sure to input the key names as headers not the values), then append the values from the json using append row tool again(now the values in its designated key), make sure the first row is the header with key names and second one is with the values.\n\nIf no, append a new row with the generalize document name in that spreadsheet and in spreadsheet ID column assign nothing\n\nmake sure to follow these format in tools:\n\n-“url” demo in append row http node: https://sheets.googleapis.com/v4/spreadsheets/1g60FR2dAZ6OtJ1NM06le85agaxCWOW11TbxQj45S2Ug/values/Sheet1!A:Z:append\nthe spreadsheet id will be changed accordingly\n\n-pass spreadsheet ID only in get rows tool’s “document” field\n\n-make sure to check spreadsheet header before sending to append rows http tool\n\n-follow this exact json format in append row’s body, with necessary values or keys:\n{\n  \"majorDimension\": \"ROWS\",\n  \"values\": [[\"val1\", \"val2\"]]\n}\n\n- make sure to use natural key names and natural values without any nested objects simple natural \"key\": \"value\" structure, if value is big use endline(\\n) comma etc in it to format naturally and extract the fields as given for each doc type(try to map all the values inside these keys) and pass them accordingly:
\nResume: Name, Email, Phone no, Github URL, Linkedin URL, Education, Technical Skills, Projects, Additional Section, Score(according to structure), Comment(all over suitableness)\n\nReceipt: receipt_id, transaction_date, merchant_name, merchant_address, merchant_phone, cashier_name, register_number, customer_name, customer_id, items, subtotal, tax, total, currency, payment_method, discount_amount, discount_description, tip_amount, return_policy, barcode, additional_charges, notes, others\n\nClaims Processing: form_type, form_version, carrier_name, insurance_type, insured_id_number, patient_name, patient_birth_date, patient_sex, patient_address, patient_relationship, insured_name, insured_policy_group, current_illness_date, referring_physician_name, hospitalization_from, hospitalization_to, diagnosis_codes, service_lines, total_charge, amount_paid, balance_due, accept_assignment, billing_provider, service_facility, physician_signature, omb_number\n\nPhysician Order: patient_full_name, patient_address_line1, patient_address_city, patient_address_state, patient_address_zip, patient_phone, patient_dob, physician_full_name, referring_clinic, referring_clinic_address_line1, referring_clinic_city, referring_clinic_state, referring_clinic_zip, physician_phone, physician_fax, additional_notes, form_signed_date\n\nConstruction Blueprint: project_name, project_id, project_location_line1, project_location_city, project_location_state, project_location_zip, client_full_name, general_contractor_full_name, project_period, permits_approvals, document_type, document_number, document_issue_date, document_author, drawing_titles_numbers, scale_legends, annotations_markups, cad_bim_metadata, title_job_name, title_address_line1, title_address_city, title_address_state, title_address_zip, title_drawing_number, title_revision, title_drawn_by, title_checked_by, title_date, title_scale, title_agency_name, title_document_title, title_sheet_number, title_work_order_number, title_issue_date, title_revision_date, drawing_type, scale_information, environmental_impact\n\nHere’s three example flow:\n1. you analyze the json and found its a claims processing type doc, you search the '1-e3vUMW_xJ8Gqj7Ifp7hlESl726tnHaqqFf9DYc_1kE’ spreadsheet for such type, you found a matching row, fetch the spreadsheet ID of that type, check the header columns using get rows tool and append the json values to that spreadsheet according to columns using append row tool.\n2. you analyze the json and found its a construction blueprint type doc, you search the '1-e3vUMW_xJ8Gqj7Ifp7hlESl726tnHaqqFf9DYc_1kE’ spreadsheet for such type, you found a matching row, fetch the spreadsheet ID of that type, use get rows to that and found its blank, use append row tool to add header columns with keys, then check using get rows again and send the values according to header column using append row tool again with the values\n3. you analyze the json and found its a resume type doc, you search the fixed spreadsheet and found no such row, then you create a new row with suitable name like resume and in spreadsheet id field assign nothing"
        },
        "promptType": "define"
      },
      "typeVersion": 2.2
    },
    {
      "id": "702f47dc-5d19-49e2-9f2a-ef8afcac5360",
      "name": "ファイルのダウンロード2",
      "type": "n8n-nodes-base.googleDrive",
      "notes": "Downloads receipt files from Google Drive for AI processing.",
      "position": [
        -624,
        16
      ],
      "parameters": {
        "fileId": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $('Monitor Uploads').item.json.id }}"
        },
        "options": {
          "binaryPropertyName": "data2"
        },
        "operation": "download"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "oCzY5bzObKMMfjpu",
          "name": "Google Drive account 3"
        }
      },
      "typeVersion": 3
    }
  ],
  "pinData": {},
  "connections": {
    "c8a157b6-381f-4768-bbc6-419621cd1270": {
      "ai_tool": [
        [
          {
            "node": "4d92bf87-046e-4df9-bff8-dae23deec32f",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "dc267443-93f4-40b2-a1cb-fca4137fd76a": {
      "main": [
        [
          {
            "node": "a9831503-4094-486b-a0f9-2275b7554a7a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "702f47dc-5d19-49e2-9f2a-ef8afcac5360": {
      "main": [
        [
          {
            "node": "65b1be08-0bf4-4511-852f-7fbe230c076d",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "1439fa01-eb2e-4e60-8b32-9b1808ea7caf": {
      "main": [
        [
          {
            "node": "dc267443-93f4-40b2-a1cb-fca4137fd76a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "968205e6-d178-4fca-9c21-b91c5070402d": {
      "ai_languageModel": [
        [
          {
            "node": "4d92bf87-046e-4df9-bff8-dae23deec32f",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "a9831503-4094-486b-a0f9-2275b7554a7a": {
      "main": [
        [
          {
            "node": "702f47dc-5d19-49e2-9f2a-ef8afcac5360",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "63064bdd-7eaa-44be-853d-98aea26fa69b": {
      "ai_tool": [
        [
          {
            "node": "4d92bf87-046e-4df9-bff8-dae23deec32f",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "188e6cd1-9d9f-4c33-9731-104f61a02fdc": {
      "main": [
        [
          {
            "node": "4d92bf87-046e-4df9-bff8-dae23deec32f",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
よくある質問

このワークフローの使い方は?

上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。

このワークフローはどんな場面に適していますか?

中級 - コンテンツ作成, マルチモーダルAI

有料ですか?

このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。

ワークフロー情報
難易度
中級
ノード数14
カテゴリー2
ノードタイプ10
難易度説明

経験者向け、6-15ノードの中程度の複雑さのワークフロー

作成者
Atik

Atik

@atik

AI and Automation engineer with 2 years of experience helping businesses streamline workflows using tools like n8n, Make, and Zapier. I also build custom Python solutions and AI integrations tailored to your needs. Use my link to book an initial consultation for automation and AI projects.

外部リンク
n8n.ioで表示

このワークフローを共有

カテゴリー

カテゴリー: 34