私のスマートエージェントアリーナコミュニティ競技会
上級
これはContent Creation, Multimodal AI分野の自動化ワークフローで、41個のノードを含みます。主にSet, Code, Wait, Filter, Evaluationなどのノードを使用。 Qdrant、Mistral OCR、GPT-4を使ったRAGベースのQ&Aシステムの構築
前提条件
- •Google Drive API認証情報
- •ターゲットAPIの認証情報が必要な場合あり
- •OpenAI API Key
- •Qdrantサーバー接続情報
使用ノード (41)
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "9wQdbEN53X1Q78fl",
"meta": {
"instanceId": "a4bfc93e975ca233ac45ed7c9227d84cf5a2329310525917adaf3312e10d5462",
"templateCredsSetupCompleted": true
},
"name": "My Agentic Arena Community Contest",
"tags": [],
"nodes": [
{
"id": "ff9d2c01-8f8b-4e2b-927a-68e73a048a50",
"name": "評価時のみ実行",
"type": "n8n-nodes-base.evaluation",
"position": [
-176,
336
],
"parameters": {
"operation": "checkIfEvaluating"
},
"typeVersion": 4.7
},
{
"id": "061e124c-c05a-4d8e-be34-5e3894d5afc9",
"name": "評価入力",
"type": "n8n-nodes-base.set",
"position": [
-1392,
320
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "91a79047-f1c3-4b16-921e-0c8a45c43320",
"name": "chatInput",
"type": "string",
"value": "={{ $json.question }}"
},
{
"id": "56cb3f48-70b0-4737-b4cd-8563fdd28455",
"name": "sessionId",
"type": "string",
"value": "=pureEval-{{ Math.round(Math.random()*1000) }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "1b9691ad-a118-4c57-a970-6dae65cf4f6a",
"name": "評価セット",
"type": "n8n-nodes-base.evaluationTrigger",
"position": [
-1600,
320
],
"parameters": {
"filtersUI": {
"values": [
{
"lookupColumn": "agent answer"
}
]
},
"limitRows": true,
"sheetName": {
"__rl": true,
"mode": "list",
"value": "gid=0",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1ed0c-Nt4BTETlbwpCA3oTdp7Z_-h1om2tJGasOpPvbo/edit#gid=0",
"cachedResultName": "Eval"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1ed0c-Nt4BTETlbwpCA3oTdp7Z_-h1om2tJGasOpPvbo",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1ed0c-Nt4BTETlbwpCA3oTdp7Z_-h1om2tJGasOpPvbo/edit?usp=drivesdk",
"cachedResultName": "Public Agentic Arena Evaluation Set"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "JYR6a64Qecd6t8Hb",
"name": "Google Sheets account"
}
},
"typeVersion": 4.6
},
{
"id": "2f3235df-a66a-4ac2-82b3-38b58985357e",
"name": "付箋3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-320,
96
],
"parameters": {
"color": 4,
"width": 1024,
"height": 560,
"content": "## Eval for Correctness"
},
"typeVersion": 1
},
{
"id": "aadf0db5-676b-47c0-99ef-12f9b14aaffe",
"name": "付箋4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1648,
208
],
"parameters": {
"color": 4,
"width": 656,
"height": 288,
"content": "## Eval Input\n\nCorrect the _Set-Node_ directly to your Agent, once done"
},
"typeVersion": 1
},
{
"id": "98e04e20-12dc-4d2b-947f-5dc54ba9abc0",
"name": "チャットへの返信",
"type": "@n8n/n8n-nodes-langchain.chat",
"position": [
304,
512
],
"parameters": {
"message": "={{ $json.output }}",
"options": {}
},
"typeVersion": 1
},
{
"id": "adf0d271-cae7-4aa7-b8fd-e58a3d4fd4af",
"name": "空行をフィルタリング",
"type": "n8n-nodes-base.filter",
"position": [
-1184,
320
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "9eab8192-200a-4520-afe9-b13c14cd000c",
"operator": {
"type": "string",
"operation": "notEmpty",
"singleValue": true
},
"leftValue": "={{ $json.chatInput }}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "ac63265e-e361-4df3-9a32-4f3aca4d504f",
"name": "評価を保存",
"type": "n8n-nodes-base.evaluation",
"position": [
560,
272
],
"parameters": {
"outputs": {
"values": [
{
"outputName": "correctness",
"outputValue": "={{ $json.Correctness }}"
},
{
"outputName": "agent answer",
"outputValue": "={{ $('AI Agent').item.json.output }}"
}
]
},
"sheetName": {
"__rl": true,
"mode": "list",
"value": "gid=0",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1D1P_B70KYuzLXVhSFGd6t19Q2u7msEenvhUqajwLw7k/edit#gid=0",
"cachedResultName": "Sheet1"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1ed0c-Nt4BTETlbwpCA3oTdp7Z_-h1om2tJGasOpPvbo",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1ed0c-Nt4BTETlbwpCA3oTdp7Z_-h1om2tJGasOpPvbo/edit?usp=drivesdk",
"cachedResultName": "Public Agentic Arena Evaluation Set"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "JYR6a64Qecd6t8Hb",
"name": "Google Sheets account"
}
},
"typeVersion": 4.7
},
{
"id": "baac5f6a-46ab-4207-94c0-cc2445c3a0aa",
"name": "評価を実行",
"type": "n8n-nodes-base.evaluation",
"position": [
208,
272
],
"parameters": {
"prompt": "You are an expert factual evaluator assessing the accuracy of answers compared to established ground truths.\n\nEvaluate the factual correctness of a given output compared to the provided ground truth on a scale from 1 to 5. Use detailed reasoning to thoroughly analyze all claims before determining the final score.\n\n# Scoring Criteria\n\n- 5: Highly similar - The output and ground truth are nearly identical, with only minor, insignificant differences.\n- 4: Somewhat similar - The output is largely similar to the ground truth but has few noticeable differences.\n- 3: Moderately similar - There are some evident differences, but the core essence is captured in the output.\n- 2: Slightly similar - The output only captures a few elements of the ground truth and contains several differences.\n- 1: Not similar - The output is significantly different from the ground truth, with few or no matching elements.\n- 0: Not similar at all – The outpus is completely different from the ground truth or not provided. Like nothings is matching.\n\nEvery correct Citation (ideally exact) inside of the Output that matches the provided ground truth is a strong boost for a good score. Also important: A Citation DOES NOT require to be in square brackets. Correct Text is perfectly fine.\n\n# Evaluation Steps\n\n1. Identify and list the key elements present in both the output and the ground truth.\n2. Compare these key elements to evaluate their similarities and differences, considering both content and structure.\n3. Analyze the semantic meaning conveyed by both the output and the ground truth, noting any significant deviations.\n4. Consider factual accuracy of specific details, including names, dates, numbers, and relationships.\n5. Assess whether the output maintains the factual integrity of the ground truth, even if phrased differently.\n6. Determine the overall level of similarity and accuracy according to the defined criteria.\n7. Check if the Citation of Source is provided and matches the original source of the ground truth.\n\n# Output Format\n\nProvide:\n- A detailed analysis of the comparison (extended reasoning)\n- A one-sentence summary highlighting key differences (not similarities)\n- The final similarity score as an integer (0, 1, 2, 3, 4, or 5)\n\nAlways follow the JSON format below and return nothing else:\n{\n \"extended_reasoning\": \"<detailed step-by-step analysis of factual accuracy and similarity>\",\n \"reasoning_summary\": \"<one sentence summary focusing on key differences>\",\n \"score\": <number: integer from 1 to 5>,\n \"expected_citation\": \"<exact correct citation of the source like in expected answer>\",\n}\n\n# Examples\n\n**Example 1:**\n\nInput:\n- Output: \"The cat sat on the mat.\"\n- Ground Truth: \"The feline is sitting on the rug.\"\n\nExpected Output:\n{\n \"extended_reasoning\": \"I need to compare 'The cat sat on the mat' with 'The feline is sitting on the rug.' First, let me identify the key elements: both describe an animal ('cat' vs 'feline') in a position ('sat' vs 'sitting') on a surface ('mat' vs 'rug'). The subject is semantically identical - 'cat' and 'feline' refer to the same animal. The action is also semantically equivalent - 'sat' and 'sitting' both describe the same position, though one is past tense and one is present continuous. The location differs in specific wording ('mat' vs 'rug') but both refer to floor coverings that serve the same function. The basic structure and meaning of both sentences are preserved, though they use different vocabulary and slightly different tense. The core information being conveyed is the same, but there are noticeable wording differences.\",\n \"reasoning_summary\": \"The sentences differ in vocabulary choice ('cat' vs 'feline', 'mat' vs 'rug') and verb tense ('sat' vs 'is sitting').\",\n \"score\": 3\n}\n\n**Example 2:**\n\nInput:\n- Output: \"The quick brown fox jumps over the lazy dog.\"\n- Ground Truth: \"A fast brown animal leaps over a sleeping canine.\"\n\nExpected Output:\n{\n \"extended_reasoning\": \"I need to compare 'The quick brown fox jumps over the lazy dog' with 'A fast brown animal leaps over a sleeping canine.' Starting with the subjects: 'quick brown fox' vs 'fast brown animal'. Both describe the same entity (a fox is a type of animal) with the same attributes (quick/fast and brown). The action is described as 'jumps' vs 'leaps', which are synonymous verbs describing the same motion. The object in both sentences is a dog, described as 'lazy' in one and 'sleeping' in the other, which are related concepts (a sleeping dog could be perceived as lazy). The structure follows the same pattern: subject + action + over + object. The sentences convey the same scene with slightly different word choices that maintain the core meaning. The level of specificity differs slightly ('fox' vs 'animal', 'dog' vs 'canine'), but the underlying information and imagery remain very similar.\",\n \"reasoning_summary\": \"The sentences use different but synonymous terminology ('quick' vs 'fast', 'jumps' vs 'leaps', 'lazy' vs 'sleeping') and varying levels of specificity ('fox' vs 'animal', 'dog' vs 'canine').\",\n \"score\": 4\n}\n\n# Notes\n\n- Focus primarily on factual accuracy and semantic similarity, not writing style or phrasing differences.\n- Identify specific differences rather than making general assessments.\n- Pay special attention to dates, numbers, names, locations, and causal relationships when present.\n- Consider the significance of each difference in the context of the overall information.\n- Be consistent in your scoring approach across different evaluations.\n- Value the Citation if correct. False Citation is a negative factor. A missing Citation is strong negative factor.",
"options": {},
"operation": "setMetrics",
"actualAnswer": "={{ $json.output || \"No output provided.\" }}",
"expectedAnswer": "={{ $('Eval Set').item.json.answer }}"
},
"typeVersion": 4.7
},
{
"id": "f9b69d7f-87c5-412e-844f-b198aa7b64d0",
"name": "付箋",
"type": "n8n-nodes-base.stickyNote",
"position": [
144,
160
],
"parameters": {
"content": "## Hook up your own GSheet for saving Outputs"
},
"typeVersion": 1
},
{
"id": "56ade4de-8554-4a50-9a9c-e0a9f4ad30b0",
"name": "審査官としてのLLM",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
576,
496
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4.1",
"cachedResultName": "gpt-4.1"
},
"options": {
"temperature": 0.1,
"responseFormat": "json_object"
}
},
"credentials": {
"openAiApi": {
"id": "TefveNaDaMERl1hY",
"name": "OpenAi account (Eure)"
}
},
"typeVersion": 1.2
},
{
"id": "787c3ae3-8d48-4cb3-8380-0f00a69962ed",
"name": "付箋1",
"type": "n8n-nodes-base.stickyNote",
"position": [
144,
432
],
"parameters": {
"color": 3,
"height": 224,
"content": "## Do not touch this!\n\n\nSincerely,\n_Pure Eval_"
},
"typeVersion": 1
},
{
"id": "c050a45d-7708-4981-8f87-09f97589e2e6",
"name": "「ワークフロー実行」クリック時",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-1568,
-1216
],
"parameters": {},
"typeVersion": 1
},
{
"id": "81da391f-e1a8-4bec-8020-ba452132c46f",
"name": "Mistral アップロード",
"type": "n8n-nodes-base.httpRequest",
"position": [
-960,
-912
],
"parameters": {
"url": "https://api.mistral.ai/v1/files",
"method": "POST",
"options": {},
"sendBody": true,
"contentType": "multipart-form-data",
"authentication": "predefinedCredentialType",
"bodyParameters": {
"parameters": [
{
"name": "purpose",
"value": "ocr"
},
{
"name": "file",
"parameterType": "formBinaryData",
"inputDataFieldName": "data"
}
]
},
"nodeCredentialType": "mistralCloudApi"
},
"credentials": {
"mistralCloudApi": {
"id": "FydnNvrpqnG0B7ee",
"name": "Mistral Cloud account"
}
},
"typeVersion": 4.2
},
{
"id": "1c48b0d2-8256-406f-86cc-c05f3b762117",
"name": "Mistral 署名付きURL",
"type": "n8n-nodes-base.httpRequest",
"position": [
-640,
-912
],
"parameters": {
"url": "=https://api.mistral.ai/v1/files/{{ $json.id }}/url",
"options": {},
"sendQuery": true,
"sendHeaders": true,
"authentication": "predefinedCredentialType",
"queryParameters": {
"parameters": [
{
"name": "expiry",
"value": "24"
}
]
},
"headerParameters": {
"parameters": [
{
"name": "Accept",
"value": "application/json"
}
]
},
"nodeCredentialType": "mistralCloudApi"
},
"credentials": {
"mistralCloudApi": {
"id": "FydnNvrpqnG0B7ee",
"name": "Mistral Cloud account"
}
},
"typeVersion": 4.2
},
{
"id": "1868dc23-f486-4ec7-85e4-41ca7a677c7a",
"name": "Mistral DOC OCR",
"type": "n8n-nodes-base.httpRequest",
"position": [
-320,
-912
],
"parameters": {
"url": "https://api.mistral.ai/v1/ocr",
"method": "POST",
"options": {},
"jsonBody": "={\n \"model\": \"mistral-ocr-latest\",\n \"document\": {\n \"type\": \"document_url\",\n \"document_url\": \"{{ $json.url }}\"\n },\n \"include_image_base64\": true\n}",
"sendBody": true,
"specifyBody": "json",
"authentication": "predefinedCredentialType",
"nodeCredentialType": "mistralCloudApi"
},
"credentials": {
"mistralCloudApi": {
"id": "FydnNvrpqnG0B7ee",
"name": "Mistral Cloud account"
}
},
"typeVersion": 4.2
},
{
"id": "1795d977-cce8-42aa-a74e-9d8ac80bf5c5",
"name": "アイテムをループ処理",
"type": "n8n-nodes-base.splitInBatches",
"position": [
-1552,
-640
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "1bc2beaf-c0da-41ec-95c4-740ae35cd55d",
"name": "コレクションを更新",
"type": "n8n-nodes-base.httpRequest",
"position": [
-1248,
-1216
],
"parameters": {
"url": "http://XX.XX.XX:6333/collections/agentic-arena/points/delete",
"method": "POST",
"options": {},
"jsonBody": "{\n \"filter\": {}\n}",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"genericAuthType": "httpHeaderAuth",
"headerParameters": {
"parameters": [
{
"name": "Content-Type",
"value": "application/json"
}
]
}
},
"credentials": {
"httpHeaderAuth": {
"id": "qhny6r5ql9wwotpn",
"name": "Qdrant API (Hetzner)"
}
},
"typeVersion": 4.2
},
{
"id": "83d76a59-2184-4d36-bb00-eb882c6882eb",
"name": "Embeddings OpenAI",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
-768,
-368
],
"parameters": {
"options": {
"stripNewLines": false
}
},
"credentials": {
"openAiApi": {
"id": "4zwP0MSr8zkNvvV9",
"name": "OpenAi account"
}
},
"typeVersion": 1.1
},
{
"id": "f2170147-3b23-460c-b9d4-8d5554a8d90c",
"name": "デフォルトデータローダー",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
-624,
-400
],
"parameters": {
"options": {
"metadata": {
"metadataValues": [
{
"name": "document",
"value": "={{$('Get PDF').item.binary.data.fileName}}"
}
]
}
}
},
"typeVersion": 1
},
{
"id": "8c819fbd-daa2-4390-af6e-10665073e0e7",
"name": "コード",
"type": "n8n-nodes-base.code",
"position": [
0,
-912
],
"parameters": {
"jsCode": "const data = $json.pages;\n\nreturn data.map(entry => ({\n json: {\n markdown: entry.markdown\n }\n}));"
},
"typeVersion": 2
},
{
"id": "2f4108c9-9ac2-49e9-b9d1-52db9d50d518",
"name": "待機",
"type": "n8n-nodes-base.wait",
"position": [
-224,
-624
],
"webhookId": "1000b40d-5dc5-4795-9dd2-8a23653c2b49",
"parameters": {},
"typeVersion": 1.1
},
{
"id": "994ae38c-8f8d-4dfb-9441-a72de0d32d3c",
"name": "Qdrantベクターストア",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
-704,
-624
],
"parameters": {
"mode": "insert",
"options": {},
"qdrantCollection": {
"__rl": true,
"mode": "list",
"value": "agentic-arena",
"cachedResultName": "agentic-arena"
}
},
"credentials": {
"qdrantApi": {
"id": "iyQ6MQiVaF3VMBmt",
"name": "QdrantApi account (Hetzner)"
}
},
"typeVersion": 1.1
},
{
"id": "7304d3bc-929a-4e99-9663-b9e6ccee849d",
"name": "アイテムをループ処理1",
"type": "n8n-nodes-base.splitInBatches",
"position": [
-592,
-1216
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "77330811-3fc7-4cab-b370-c7053b99d613",
"name": "他ワークフローから実行時",
"type": "n8n-nodes-base.executeWorkflowTrigger",
"position": [
-1616,
-912
],
"parameters": {
"inputSource": "passthrough"
},
"typeVersion": 1.1
},
{
"id": "1de75150-f5a5-4eec-82d0-f1cf930babb0",
"name": "コレクションを作成",
"type": "n8n-nodes-base.httpRequest",
"position": [
-1568,
-1472
],
"parameters": {
"url": "http://XX.XX.XX:6333/collections/agentic-arena",
"method": "PUT",
"options": {},
"jsonBody": "{\n \"vectors\": {\n \"size\": 1536,\n \"distance\": \"Cosine\" \n },\n \"shard_number\": 1, \n \"replication_factor\": 1, \n \"write_consistency_factor\": 1 \n}",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"genericAuthType": "httpHeaderAuth",
"headerParameters": {
"parameters": [
{
"name": "Content-Type",
"value": "application/json"
}
]
}
},
"credentials": {
"httpHeaderAuth": {
"id": "qhny6r5ql9wwotpn",
"name": "Qdrant API (Hetzner)"
}
},
"typeVersion": 4.2
},
{
"id": "46919cd2-4558-413e-8676-6dfc85b060fe",
"name": "ページを設定",
"type": "n8n-nodes-base.set",
"position": [
-1088,
-624
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "189f4944-a692-423c-bc6d-76747e1d04df",
"name": "text",
"type": "string",
"value": "={{ $json.markdown }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "fbfdd7d6-f648-4460-b645-7f98228eb57d",
"name": "PDFを検索",
"type": "n8n-nodes-base.googleDrive",
"position": [
-896,
-1216
],
"parameters": {
"filter": {
"folderId": {
"__rl": true,
"mode": "list",
"value": "1dbVllHyJvJqJs2P5lTzvhqP8NNCrqwVp",
"cachedResultUrl": "https://drive.google.com/drive/folders/1dbVllHyJvJqJs2P5lTzvhqP8NNCrqwVp",
"cachedResultName": "Agentic Arena"
},
"whatToSearch": "files"
},
"options": {},
"resource": "fileFolder",
"returnAll": true
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "HEy5EuZkgPZVEa9w",
"name": "Google Drive account (n3w.it)"
}
},
"typeVersion": 3
},
{
"id": "0a35360d-17a7-4095-a93b-0c0ca6efa754",
"name": "PDFを取得",
"type": "n8n-nodes-base.googleDrive",
"position": [
-1312,
-912
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "id",
"value": "={{ $json.file_id }}"
},
"options": {},
"operation": "download"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "HEy5EuZkgPZVEa9w",
"name": "Google Drive account (n3w.it)"
}
},
"typeVersion": 3
},
{
"id": "6f6ee381-0c36-4c59-823e-a7bb522ccc70",
"name": "文字テキスト分割器",
"type": "@n8n/n8n-nodes-langchain.textSplitterCharacterTextSplitter",
"position": [
-608,
-192
],
"parameters": {
"separator": "#",
"chunkOverlap": 100
},
"typeVersion": 1
},
{
"id": "003c9ac1-c683-4b5d-9a43-dbdaca687b37",
"name": "AIエージェント",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
-880,
336
],
"parameters": {
"text": "={{ $json.chatInput }}",
"options": {
"systemMessage": "=You are a Ministry of Finance (MoF) policy compliance assistant specialized in permit applications and regulatory analysis. Your role is to evaluate permit applications against established MoF policies and provide accurate determinations.\n\n**CORE INSTRUCTIONS:**\n1. **Always use the RAG tool** for each request to retrieve relevant policy information\n2. **Never invent or fabricate information** - only use verified policy data\n3. **Respond in English** with clear and professional language\n4. **Provide definitive determinations** - start with \"Yes\" or \"No\" followed by specific reasoning\n\n**RESPONSE STRUCTURE:**\n- **Opening determination:** Clear Yes/No or specific outcome statement\n- **Reasoning:** Concise explanation referencing specific policy requirements\n- **Citations:** Always include citations in format: Citation: [MoF Policy ###: Policy Name]\n\n**KEY ANALYSIS AREAS:**\n- Zone requirements and submission timelines\n- Payment timing (minimum 7 days before activation)\n- Entity type eligibility (nonprofit vs. for-profit restrictions)\n- Officer conflict of interest rules\n- Emergency processing classifications\n- Seasonal adjustment requirements\n- Fee calculations and waiver eligibility\n\n**EXAMPLE RESPONSE FORMAT:**\n```\nYes/No—[specific violation]. [Timeline/requirement details], [consequences].\n\nCitation: [MoF Policy ###: Policy Name, MoF Policy ###: Policy Name]\n```\n\n**QUALITY STANDARDS:**\n- Be precise with dates, timelines, and calculations\n- Identify ALL applicable violations in complex cases\n- Reference multiple policies when relevant\n- Maintain professional, authoritative tone\n- Ensure legal accuracy and compliance\n\nAlways cross-reference multiple policies when evaluating complex scenarios involving multiple potential violations."
},
"promptType": "define"
},
"typeVersion": 2.2
},
{
"id": "8d8a79c6-0055-4829-89f7-08b98399c157",
"name": "シンプルメモリ",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
-768,
528
],
"parameters": {},
"typeVersion": 1.3
},
{
"id": "7e2250c0-a209-4c51-b87e-73193dc192d8",
"name": "Reranker Cohere",
"type": "@n8n/n8n-nodes-langchain.rerankerCohere",
"position": [
-512,
704
],
"parameters": {},
"credentials": {
"cohereApi": {
"id": "abTpzDTZs5Bvhxjp",
"name": "CohereApi account"
}
},
"typeVersion": 1
},
{
"id": "b89afe71-728c-497c-8f07-7c8ace131607",
"name": "Embeddings OpenAI1",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
-672,
704
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "TefveNaDaMERl1hY",
"name": "OpenAi account (Eure)"
}
},
"typeVersion": 1.2
},
{
"id": "22f8a99c-77a1-4708-b086-b75723d82031",
"name": "RAG",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
-640,
528
],
"parameters": {
"mode": "retrieve-as-tool",
"options": {},
"useReranker": true,
"toolDescription": "Search the RAG for questions you are asked\n",
"qdrantCollection": {
"__rl": true,
"mode": "list",
"value": "agentic-arena",
"cachedResultName": "agentic-arena"
}
},
"credentials": {
"qdrantApi": {
"id": "iyQ6MQiVaF3VMBmt",
"name": "QdrantApi account (Hetzner)"
}
},
"typeVersion": 1.3
},
{
"id": "f0aec6e7-a4b4-43a6-a15b-890712c59703",
"name": "「Agent Arena」を呼び出し",
"type": "n8n-nodes-base.executeWorkflow",
"position": [
32,
-1200
],
"parameters": {
"mode": "each",
"options": {
"waitForSubWorkflow": true
},
"workflowId": {
"__rl": true,
"mode": "id",
"value": "9wQdbEN53X1Q78fl"
},
"workflowInputs": {
"value": {},
"schema": [],
"mappingMode": "defineBelow",
"matchingColumns": [],
"attemptToConvertTypes": false,
"convertFieldsToString": true
}
},
"typeVersion": 1.2
},
{
"id": "c49b7933-592a-4cb7-86f5-fcba33269e4d",
"name": "OpenAI チャットモデル",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
-928,
528
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4.1",
"cachedResultName": "gpt-4.1"
},
"options": {
"temperature": 0.1
}
},
"credentials": {
"openAiApi": {
"id": "TefveNaDaMERl1hY",
"name": "OpenAi account (Eure)"
}
},
"typeVersion": 1.2
},
{
"id": "315b9054-8eb6-48b7-a6b5-97663e5059f5",
"name": "付箋5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1664,
-2752
],
"parameters": {
"color": 3,
"width": 1904,
"height": 432,
"content": "# Agentic Arena Community Contest\n\n## Overview\n\nThis competition challenges you to build a Retrieval-Augmented Generation (RAG) AI agent in n8n that can accurately answer questions based on a provided PDF knowledge base. \n\n## What You're Building\n\nYou'll create an n8n workflow that:\n\n- Ingests PDF documents into a vector database or knowledge retrieval system\n- Processes natural language questions about the content\n- Returns accurate answers based solely on the provided documentation with proper citations\n- Demonstrates high accuracy when tested against our evaluation questions\n\n\n"
},
"typeVersion": 1
},
{
"id": "35156e25-624e-47cc-9d2d-48e4a335b970",
"name": "付箋6",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1664,
-2288
],
"parameters": {
"color": 5,
"width": 1904,
"height": 352,
"content": "\n## Rules\n\n### 1. PDF Knowledge Base\n- Find a folder with the [PDF files here](https://drive.google.com/drive/folders/1FqVwbNrAPn2dHhIwSEtlu5kl3z2jEC0U?usp=sharing).\n- Copy or download them for use from your own system\n\n### 2. Evaluation Set\n- Find the Google Sheet with the [evaluation set here](https://docs.google.com/spreadsheets/d/1cgZzr0-D5Kpd6HrKowyoN_fI2dY0dkP9Ljljxix0AlI/edit?usp=sharing).\n- Copy the Sheet to use it in your workflow\n\n### 3. Starter Workflow\n- [Download this starter workflow](https://file.notion.so/f/f/d147bfac-0bab-4c58-884f-f45c5f5a13e8/7f8419b8-7ac3-4c55-8c5c-e0874aa7a46f/AgenticArena_Challenge1_StarterWorkflow.json?table=block&id=2685b6e0-c94f-809b-905c-cf39f05e0e0f&spaceId=d147bfac-0bab-4c58-884f-f45c5f5a13e8&expirationTimestamp=1758902400000&signature=C3ERsAdCUDcvYkODZBR5LZLxx9q4_2Nk1XEqjgOQNOY&downloadName=AgenticArena_Challenge1_StarterWorkflow.json) and import into your n8n instance "
},
"typeVersion": 1
},
{
"id": "4ca9e2fe-fa70-4f5e-b694-5e0c2c0d08fd",
"name": "付箋7",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1664,
-1888
],
"parameters": {
"width": 1904,
"height": 1856,
"content": "## My Solution\n\n1. **Create a collection on Qdrant** (Self-hosted) - Set up a new vector collection in Qdrant for storing embeddings\n\n2. **Retrieve PDF files from Google Drive** - Download or access the PDF documents from Google Drive\n\n3. **Convert PDF documents using Mistral OCR** - Process the PDF files through Mistral's OCR (Optical Character Recognition) system to extract text\n\n4. **Embed documents in Qdrant Vector Store** - Generate embeddings for the extracted content and store them in the Qdrant vector database\n\n5. **Set up Evaluation Workflow with AI Agent** - Configure an evaluation workflow that includes:\n - AI Agent integration\n - Connection to Qdrant vector database\n - Cohere reranker implementation\n - GPT-4.1 model (or GPT-4o/GPT-4 Turbo, depending on the actual model being used)\n\n6. **Save output to Google Sheets** - Export and store the results in a [Google Sheets document](https://docs.google.com/spreadsheets/d/1ed0c-Nt4BTETlbwpCA3oTdp7Z_-h1om2tJGasOpPvbo/edit?usp=sharing)\n"
},
"typeVersion": 1
},
{
"id": "fc396562-d642-46d9-a287-8357bf79b59f",
"name": "ファイルIDを取得",
"type": "n8n-nodes-base.set",
"position": [
-272,
-1200
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "ca7c30f2-444d-4551-988d-0f513e5ee4b1",
"name": "file_id",
"type": "string",
"value": "={{ $json.id }}"
}
]
}
},
"typeVersion": 3.4
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "d7715ff3-8833-4b10-862e-0eb02f65c2ff",
"connections": {
"22f8a99c-77a1-4708-b086-b75723d82031": {
"ai_tool": [
[
{
"node": "003c9ac1-c683-4b5d-9a43-dbdaca687b37",
"type": "ai_tool",
"index": 0
}
]
]
},
"8c819fbd-daa2-4390-af6e-10665073e0e7": {
"main": [
[
{
"node": "1795d977-cce8-42aa-a74e-9d8ac80bf5c5",
"type": "main",
"index": 0
}
]
]
},
"2f4108c9-9ac2-49e9-b9d1-52db9d50d518": {
"main": [
[
{
"node": "1795d977-cce8-42aa-a74e-9d8ac80bf5c5",
"type": "main",
"index": 0
}
]
]
},
"0a35360d-17a7-4095-a93b-0c0ca6efa754": {
"main": [
[
{
"node": "81da391f-e1a8-4bec-8020-ba452132c46f",
"type": "main",
"index": 0
}
]
]
},
"003c9ac1-c683-4b5d-9a43-dbdaca687b37": {
"main": [
[
{
"node": "ff9d2c01-8f8b-4e2b-927a-68e73a048a50",
"type": "main",
"index": 0
}
]
]
},
"1b9691ad-a118-4c57-a970-6dae65cf4f6a": {
"main": [
[
{
"node": "061e124c-c05a-4d8e-be34-5e3894d5afc9",
"type": "main",
"index": 0
}
]
]
},
"46919cd2-4558-413e-8676-6dfc85b060fe": {
"main": [
[
{
"node": "994ae38c-8f8d-4dfb-9441-a72de0d32d3c",
"type": "main",
"index": 0
}
]
]
},
"061e124c-c05a-4d8e-be34-5e3894d5afc9": {
"main": [
[
{
"node": "adf0d271-cae7-4aa7-b8fd-e58a3d4fd4af",
"type": "main",
"index": 0
}
]
]
},
"fc396562-d642-46d9-a287-8357bf79b59f": {
"main": [
[
{
"node": "f0aec6e7-a4b4-43a6-a15b-890712c59703",
"type": "main",
"index": 0
}
]
]
},
"fbfdd7d6-f648-4460-b645-7f98228eb57d": {
"main": [
[
{
"node": "7304d3bc-929a-4e99-9663-b9e6ccee849d",
"type": "main",
"index": 0
}
]
]
},
"8d8a79c6-0055-4829-89f7-08b98399c157": {
"ai_memory": [
[
{
"node": "003c9ac1-c683-4b5d-9a43-dbdaca687b37",
"type": "ai_memory",
"index": 0
}
]
]
},
"56ade4de-8554-4a50-9a9c-e0a9f4ad30b0": {
"ai_languageModel": [
[
{
"node": "baac5f6a-46ab-4207-94c0-cc2445c3a0aa",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"81da391f-e1a8-4bec-8020-ba452132c46f": {
"main": [
[
{
"node": "1c48b0d2-8256-406f-86cc-c05f3b762117",
"type": "main",
"index": 0
}
]
]
},
"baac5f6a-46ab-4207-94c0-cc2445c3a0aa": {
"main": [
[
{
"node": "ac63265e-e361-4df3-9a32-4f3aca4d504f",
"type": "main",
"index": 0
}
]
]
},
"1795d977-cce8-42aa-a74e-9d8ac80bf5c5": {
"main": [
[],
[
{
"node": "46919cd2-4558-413e-8676-6dfc85b060fe",
"type": "main",
"index": 0
}
]
]
},
"1868dc23-f486-4ec7-85e4-41ca7a677c7a": {
"main": [
[
{
"node": "8c819fbd-daa2-4390-af6e-10665073e0e7",
"type": "main",
"index": 0
}
]
]
},
"7e2250c0-a209-4c51-b87e-73193dc192d8": {
"ai_reranker": [
[
{
"node": "22f8a99c-77a1-4708-b086-b75723d82031",
"type": "ai_reranker",
"index": 0
}
]
]
},
"7304d3bc-929a-4e99-9663-b9e6ccee849d": {
"main": [
[],
[
{
"node": "fc396562-d642-46d9-a287-8357bf79b59f",
"type": "main",
"index": 0
}
]
]
},
"83d76a59-2184-4d36-bb00-eb882c6882eb": {
"ai_embedding": [
[
{
"node": "994ae38c-8f8d-4dfb-9441-a72de0d32d3c",
"type": "ai_embedding",
"index": 0
}
]
]
},
"adf0d271-cae7-4aa7-b8fd-e58a3d4fd4af": {
"main": [
[
{
"node": "003c9ac1-c683-4b5d-9a43-dbdaca687b37",
"type": "main",
"index": 0
}
]
]
},
"c49b7933-592a-4cb7-86f5-fcba33269e4d": {
"ai_languageModel": [
[
{
"node": "003c9ac1-c683-4b5d-9a43-dbdaca687b37",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"f0aec6e7-a4b4-43a6-a15b-890712c59703": {
"main": [
[
{
"node": "7304d3bc-929a-4e99-9663-b9e6ccee849d",
"type": "main",
"index": 0
}
]
]
},
"b89afe71-728c-497c-8f07-7c8ace131607": {
"ai_embedding": [
[
{
"node": "22f8a99c-77a1-4708-b086-b75723d82031",
"type": "ai_embedding",
"index": 0
}
]
]
},
"1c48b0d2-8256-406f-86cc-c05f3b762117": {
"main": [
[
{
"node": "1868dc23-f486-4ec7-85e4-41ca7a677c7a",
"type": "main",
"index": 0
}
]
]
},
"1bc2beaf-c0da-41ec-95c4-740ae35cd55d": {
"main": [
[
{
"node": "fbfdd7d6-f648-4460-b645-7f98228eb57d",
"type": "main",
"index": 0
}
]
]
},
"f2170147-3b23-460c-b9d4-8d5554a8d90c": {
"ai_document": [
[
{
"node": "994ae38c-8f8d-4dfb-9441-a72de0d32d3c",
"type": "ai_document",
"index": 0
}
]
]
},
"994ae38c-8f8d-4dfb-9441-a72de0d32d3c": {
"main": [
[
{
"node": "2f4108c9-9ac2-49e9-b9d1-52db9d50d518",
"type": "main",
"index": 0
}
]
]
},
"6f6ee381-0c36-4c59-823e-a7bb522ccc70": {
"ai_textSplitter": [
[
{
"node": "f2170147-3b23-460c-b9d4-8d5554a8d90c",
"type": "ai_textSplitter",
"index": 0
}
]
]
},
"ff9d2c01-8f8b-4e2b-927a-68e73a048a50": {
"main": [
[
{
"node": "baac5f6a-46ab-4207-94c0-cc2445c3a0aa",
"type": "main",
"index": 0
}
],
[
{
"node": "98e04e20-12dc-4d2b-947f-5dc54ba9abc0",
"type": "main",
"index": 0
}
]
]
},
"77330811-3fc7-4cab-b370-c7053b99d613": {
"main": [
[
{
"node": "0a35360d-17a7-4095-a93b-0c0ca6efa754",
"type": "main",
"index": 0
}
]
]
},
"c050a45d-7708-4981-8f87-09f97589e2e6": {
"main": [
[
{
"node": "1bc2beaf-c0da-41ec-95c4-740ae35cd55d",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級 - コンテンツ作成, マルチモーダルAI
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
Mistral OCR を基にした完全な RAG パイソンデモ(PDF から始める)
Mistral OCR、Qdrant、Gemini AIを組み合わせてPDFドキュメントRAGシステムを構築
Set
Code
Wait
+
Set
Code
Wait
34 ノードDavide
人工知能
コンテキスト・ハイブリッドRAG AIコピー
RAGアプリケーション向けのGoogle DriveからSupabaseコンテキストベクトルデータベースへの同期
If
Set
Code
+
If
Set
Code
76 ノードMichael Taleb
AI RAG検索拡張
コンテンツジェネレーター v3
AI驱动ブログ自動化:使用GPT-4生成并公開SEO記事至WordPressとTwitter
If
Set
Code
+
If
Set
Code
144 ノードJay Emp0
コンテンツ作成
WordPressブログの自動化プロフェッショナル版(先端研究)v2.1マーケットプラグイン
GPT-4o、Perplexity AI、そして多言語対応を使ったSEO最適化ブログ作成の自動化
If
Set
Xml
+
If
Set
Xml
125 ノードDaniel Ng
コンテンツ作成
n8nノードの探索(可視化リファレンスライブラリ内)
n8nノードを可視化リファレンスライブラリで探索
If
Ftp
Set
+
If
Ftp
Set
113 ノードI versus AI
その他
Google Slidesプレゼンテーションの自動翻訳
GeminiをベースとしたAI駆動で、Google Slidesプレゼンテーションを任意の言語に自動翻訳
Set
Code
Wait
+
Set
Code
Wait
18 ノードDavide
文書抽出
ワークフロー情報
難易度
上級
ノード数41
カテゴリー2
ノードタイプ22
作成者
Davide
@n3witaliaFull-stack Web Developer based in Italy specialising in Marketing & AI-powered automations. For business enquiries, send me an email at info@n3w.it or add me on Linkedin.com/in/davideboizza
外部リンク
n8n.ioで表示 →
このワークフローを共有