Claude AI をテキストジェネレーターとして置き換えて Lightroom から Instagram までを自動化
中級
これはSocial Media, Multimodal AI分野の自動化ワークフローで、14個のノードを含みます。主にSet, Code, Sort, SplitOut, DataTableなどのノードを使用。 Lightroom から Instagram への自動化のために Claude AI をテキストジェネレーターとして代替
前提条件
- •ターゲットAPIの認証情報が必要な場合あり
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"meta": {
"instanceId": "57636d705a86a73b059f5900e8853e2c306d74773d27ee7f6c0fae07093009ef"
},
"nodes": [
{
"id": "466448fc-8554-49c7-a6e7-8e5ded1d43ea",
"name": "付箋ノート",
"type": "n8n-nodes-base.stickyNote",
"position": [
-32,
0
],
"parameters": {
"width": 464,
"height": 400,
"content": "### Lightroom → Instagram: Photos-to-Post Queue (n8n)\n\n**Purpose** \nWatch a Lightroom Cloud album, store new assets in a **Photos** Data Table, and generate AI alt text for captions/accessibility.\n\n**Must-configure**\n- **Lightroom API:** OAuth (Adobe) + **X-API-Key**; set your **LR catalog ID** and **LR album ID**.\n- **n8n base URL:** Publicly reachable; used by the image proxy webhook.\n- **LLM credentials:** Anthropic (or equivalent) for alt text.\n- **Data Table (Photos) minimal schema:** `lr_asset_id` (unique), `lr_asset` (JSON string), `alt` (string).\n- **Schedule:** How often to poll the album.\n- **Dedupe:** Use **rowNotExists** on `lr_asset_id` to avoid duplicates.\n- **Params Node**"
},
"typeVersion": 1
},
{
"id": "2694839a-5677-4a39-951d-d1d1a773d756",
"name": "HTTPリクエスト",
"type": "n8n-nodes-base.httpRequest",
"position": [
736,
480
],
"parameters": {
"url": "=https://lr.adobe.io/v2/catalogs/{{ $json[\"LR catalog ID\"] }}/albums/{{ $json[\"LR album ID\"] }}/assets?embed=asset ",
"options": {
"response": {
"response": {
"responseFormat": "text"
}
}
},
"sendHeaders": true,
"authentication": "genericCredentialType",
"genericAuthType": "oAuth2Api",
"headerParameters": {
"parameters": [
{
"name": "X-API-Key",
"value": "={{ $json[\"LR API key\"] }}"
}
]
}
},
"credentials": {
"oAuth2Api": {
"id": "nv3KEXFaYuFgl9pg",
"name": "Lightroom Camille"
},
"httpBearerAuth": {
"id": "HSch2E1Drk2LTOp0",
"name": "Instagram @camillerouxphoto"
}
},
"typeVersion": 4.2
},
{
"id": "387d3cfb-7315-4d17-a528-09e9c1e0688c",
"name": "JavaScriptコード",
"type": "n8n-nodes-base.code",
"position": [
960,
480
],
"parameters": {
"jsCode": "/**\n * Nettoie le préfixe XSSI \"while(1){}\" des réponses Adobe Lightroom\n * puis parse en JSON. L'item résultant contient:\n * - parsed: l'objet JSON parsé\n * - raw: le texte brut nettoyé (optionnel, utile pour debug)\n *\n * Le code gère aussi les cas où l'entrée serait déjà un objet,\n * ou si la chaîne ne contient pas le préfixe.\n */\n\nfunction stripAdobePrefix(s) {\n // supprime \"while(1){}\" avec ou sans espaces\n const re = /^\\s*while\\s*\\(\\s*1\\s*\\)\\s*{\\s*}\\s*/;\n return s.replace(re, '');\n}\n\nlet input = $json;\n\n// Si le node précédent a renvoyé la réponse sous un autre champ,\n// adapte cette ligne (par ex. input.body, input.data, etc.)\nif (typeof input !== 'string') {\n // tente quelques emplacements possibles\n if (typeof input.body === 'string') input = input.body;\n else if (typeof input.data === 'string') input = input.data;\n else if (typeof input.string === 'string') input = input.string;\n else if (typeof input === 'object') {\n // déjà un objet ? On renvoie tel quel.\n return {\n parsed: input,\n raw: JSON.stringify(input),\n _note: 'Entrée déjà objet — pas de nettoyage nécessaire.'\n };\n } else {\n // fallback: stringify\n input = JSON.stringify(input);\n }\n}\n\nconst cleaned = stripAdobePrefix(input);\n\n// Essaie de parser proprement\ntry {\n const parsed = JSON.parse(cleaned);\n return {\n parsed,\n raw: cleaned\n };\n} catch (err) {\n // En cas d’erreur, on renvoie quand même la chaîne nettoyée pour debug\n return {\n parsed: null,\n raw: cleaned,\n error: `JSON.parse a échoué: ${err && err.message ? err.message : String(err)}`\n };\n}\n"
},
"typeVersion": 2
},
{
"id": "56501cf9-12bb-4e24-a27e-6d45d2b65c9d",
"name": "分割出力",
"type": "n8n-nodes-base.splitOut",
"position": [
1184,
480
],
"parameters": {
"options": {},
"fieldToSplitOut": "parsed.resources"
},
"typeVersion": 1
},
{
"id": "6c46f47f-ba78-490f-90eb-b5d6f4a5f7cf",
"name": "画像分析",
"type": "@n8n/n8n-nodes-langchain.anthropic",
"position": [
2336,
512
],
"parameters": {
"text": "You are a photography-savvy describer. Analyze the image and write a factual, SEO-oriented English alt description (single paragraph, up to 500 characters). Focus on visible subject, composition/framing/perspective, lighting (type, direction, quality), colors/contrast, mood, setting/background, and any clearly legible text. Avoid guesses about brand, gear, identities, dates, or locations unless unambiguously visible. No sensitive attributes, no hashtags/emojis, no calls to action. Output only the paragraph.\n",
"modelId": {
"__rl": true,
"mode": "list",
"value": "claude-sonnet-4-5-20250929",
"cachedResultName": "claude-sonnet-4-5-20250929"
},
"options": {},
"resource": "image",
"imageUrls": "={{ $('Params').item.json[\"n8n instance URL\"] }}/webhook/lr-image?catalogId={{ $('Params').item.json[\"LR catalog ID\"] }}&assetId={{ $json.asset.id }}&format=1280 "
},
"credentials": {
"anthropicApi": {
"id": "9xU4CUFgJLLaeCNB",
"name": "Anthropic account"
}
},
"retryOnFail": true,
"typeVersion": 1
},
{
"id": "86e95eea-9e5c-4791-ac93-938daee1f480",
"name": "行が存在しない場合",
"type": "n8n-nodes-base.dataTable",
"position": [
1632,
480
],
"parameters": {
"filters": {
"conditions": [
{
"keyName": "lr_asset_id",
"keyValue": "={{ $json.asset.id }}"
}
]
},
"operation": "rowNotExists",
"dataTableId": {
"__rl": true,
"mode": "list",
"value": "Z4VvX6MjrmHmlAiY",
"cachedResultUrl": "/projects/wrMsdivh0K45jnU5/datatables/Z4VvX6MjrmHmlAiY",
"cachedResultName": "Photos"
}
},
"typeVersion": 1
},
{
"id": "28ffac78-712b-4405-a9e7-161edfb4bce4",
"name": "行の挿入",
"type": "n8n-nodes-base.dataTable",
"position": [
2560,
512
],
"parameters": {
"columns": {
"value": {
"alt": "={{ $json.content[0].text }}",
"lr_asset": "={{ JSON.stringify($('Split Out').item.json.asset) }}",
"lr_asset_id": "={{ $('Split Out').item.json.asset.id }}"
},
"schema": [
{
"id": "lr_asset_id",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "lr_asset_id",
"defaultMatch": false
},
{
"id": "lr_album_id",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "lr_album_id",
"defaultMatch": false
},
{
"id": "ig_posted_at",
"type": "dateTime",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "ig_posted_at",
"defaultMatch": false
},
{
"id": "ig_link",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "ig_link",
"defaultMatch": false
},
{
"id": "ig_caption",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "ig_caption",
"defaultMatch": false
},
{
"id": "lr_asset",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "lr_asset",
"defaultMatch": false
},
{
"id": "alt",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "alt",
"defaultMatch": false
}
],
"mappingMode": "defineBelow",
"matchingColumns": [],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"dataTableId": {
"__rl": true,
"mode": "list",
"value": "Z4VvX6MjrmHmlAiY",
"cachedResultUrl": "/projects/wrMsdivh0K45jnU5/datatables/Z4VvX6MjrmHmlAiY",
"cachedResultName": "Photos"
}
},
"typeVersion": 1
},
{
"id": "0bfc2470-666e-4aa9-94a5-c5e781fd931d",
"name": "並び替え",
"type": "n8n-nodes-base.sort",
"position": [
1408,
480
],
"parameters": {
"options": {},
"sortFieldsUi": {
"sortField": [
{
"fieldName": "asset.payload.captureDate"
}
]
}
},
"typeVersion": 1
},
{
"id": "b4b23fa3-b7cb-441d-8d32-5d7e04745e38",
"name": "スケジュールトリガー",
"type": "n8n-nodes-base.scheduleTrigger",
"position": [
0,
480
],
"parameters": {
"rule": {
"interval": [
{
"field": "hours"
}
]
}
},
"typeVersion": 1.2
},
{
"id": "66066e44-0326-4f2e-9870-3c35818e75df",
"name": "アイテムのループ処理",
"type": "n8n-nodes-base.splitInBatches",
"position": [
2080,
480
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "7fbb8e78-78de-494e-b090-f1b1805c3714",
"name": "パラメータ",
"type": "n8n-nodes-base.set",
"position": [
208,
480
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "d354b020-5d5c-4270-8dfb-0dc02e9bd9db",
"name": "LR catalog ID",
"type": "string",
"value": "..."
},
{
"id": "ec256e0e-71d9-43bd-8913-99213526b776",
"name": "LR API key",
"type": "string",
"value": "..."
},
{
"id": "fde215d4-14d4-4659-9f57-defdb3c4733f",
"name": "LR album ID",
"type": "string",
"value": "..."
},
{
"id": "978ee1e9-3d6f-4d87-afaf-c9926a20b690",
"name": "n8n instance URL",
"type": "string",
"value": "..."
}
]
}
},
"typeVersion": 3.4
},
{
"id": "43bc3fd0-5578-4070-bd2a-2562d20e5ded",
"name": "付箋ノート1",
"type": "n8n-nodes-base.stickyNote",
"position": [
624,
320
],
"parameters": {
"color": 5,
"width": 512,
"height": 400,
"content": "## STEP1 = Download the image list from Lightroom Cloud\n\n"
},
"typeVersion": 1
},
{
"id": "642efa01-7722-4390-beaa-a3665d184133",
"name": "付箋ノート2",
"type": "n8n-nodes-base.stickyNote",
"position": [
1168,
320
],
"parameters": {
"color": 5,
"width": 720,
"height": 400,
"content": "## STEP2 = Split and sort them\n\n\n"
},
"typeVersion": 1
},
{
"id": "267c95f8-1000-4ce7-8bd9-a2221f554923",
"name": "付箋ノート3",
"type": "n8n-nodes-base.stickyNote",
"position": [
1920,
320
],
"parameters": {
"color": 5,
"width": 848,
"height": 400,
"content": "## STEP3 = Analyse them with IA then save them in the Data Table\n\n\n"
},
"typeVersion": 1
}
],
"pinData": {},
"connections": {
"0bfc2470-666e-4aa9-94a5-c5e781fd931d": {
"main": [
[
{
"node": "86e95eea-9e5c-4791-ac93-938daee1f480",
"type": "main",
"index": 0
}
]
]
},
"7fbb8e78-78de-494e-b090-f1b1805c3714": {
"main": [
[
{
"node": "2694839a-5677-4a39-951d-d1d1a773d756",
"type": "main",
"index": 0
}
]
]
},
"56501cf9-12bb-4e24-a27e-6d45d2b65c9d": {
"main": [
[
{
"node": "0bfc2470-666e-4aa9-94a5-c5e781fd931d",
"type": "main",
"index": 0
}
]
]
},
"28ffac78-712b-4405-a9e7-161edfb4bce4": {
"main": [
[
{
"node": "66066e44-0326-4f2e-9870-3c35818e75df",
"type": "main",
"index": 0
}
]
]
},
"2694839a-5677-4a39-951d-d1d1a773d756": {
"main": [
[
{
"node": "387d3cfb-7315-4d17-a528-09e9c1e0688c",
"type": "main",
"index": 0
}
]
]
},
"6c46f47f-ba78-490f-90eb-b5d6f4a5f7cf": {
"main": [
[
{
"node": "28ffac78-712b-4405-a9e7-161edfb4bce4",
"type": "main",
"index": 0
}
]
]
},
"66066e44-0326-4f2e-9870-3c35818e75df": {
"main": [
[],
[
{
"node": "6c46f47f-ba78-490f-90eb-b5d6f4a5f7cf",
"type": "main",
"index": 0
}
]
]
},
"b4b23fa3-b7cb-441d-8d32-5d7e04745e38": {
"main": [
[
{
"node": "7fbb8e78-78de-494e-b090-f1b1805c3714",
"type": "main",
"index": 0
}
]
]
},
"387d3cfb-7315-4d17-a528-09e9c1e0688c": {
"main": [
[
{
"node": "56501cf9-12bb-4e24-a27e-6d45d2b65c9d",
"type": "main",
"index": 0
}
]
]
},
"86e95eea-9e5c-4791-ac93-938daee1f480": {
"main": [
[
{
"node": "66066e44-0326-4f2e-9870-3c35818e75df",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
中級 - ソーシャルメディア, マルチモーダルAI
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
Lightroom写真Instagram自動投稿ツール(AIキャプション)
Lightroom写真のInstagram自動投稿(AIキャプション)
Set
Sort
Limit
+
Set
Sort
Limit
17 ノードCamille Roux
ソーシャルメディア
GitHub 同期ダッシュボード - V2
コミット履歴とロールバック機能を備えた GitHub ワークフロー バージョン管理ダッシュボード
If
N8n
Set
+
If
N8n
Set
94 ノードEduard
DevOps
ArunavaのマルチエージェントインタリジャエントReddit自動化
AIによるブランドメンションとBaserowを使用してRedditの投稿に自動のにコメントを投稿
If
Set
Code
+
If
Set
Code
35 ノードArunava
ソーシャルメディア
Twitterでブランドを自動のに宣伝
Anthropic Claude AIとGoogle SheetsでTwitterのブランディングを自動報告
Set
Code
Wait
+
Set
Code
Wait
26 ノードPavlo Hurhu
ソーシャルメディア
WhatsApp、メール、Twilio SMS 経由の食品メニュー更新通知
料理メニュー更新通知器
If
Set
Code
+
If
Set
Code
22 ノードOneclick AI Squad
ソーシャルメディア
コンテンツジェネレーター v3
AI驱动ブログ自動化:使用GPT-4生成并公開SEO記事至WordPressとTwitter
If
Set
Code
+
If
Set
Code
144 ノードJay Emp0
コンテンツ作成