ITSM1
고급
이것은Ticket Management, AI RAG분야의자동화 워크플로우로, 24개의 노드를 포함합니다.주로 Set, ServiceNow, HttpRequest, ManualTrigger, Agent 등의 노드를 사용하며. Gemini, Qdrant, ServiceNow를 활용한 ITSM 티켓 분류 및 해결 자동화
사전 요구사항
- •대상 API의 인증 정보가 필요할 수 있음
- •Qdrant 서버 연결 정보
- •Google Gemini API Key
사용된 노드 (24)
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
"id": "2Qu0E8lUeCSRtola",
"meta": {
"instanceId": "3d82f3a40f5ac815bc32d53bda9e677518671f10c8d9077f63f459ab3bede2c9"
},
"name": "ITSM1",
"tags": [],
"nodes": [
{
"id": "850abce9-599a-413c-a436-60a008c0b5c9",
"name": "AI 에이전트",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
-128,
528
],
"parameters": {
"text": "=You are agent search {{ $json.chatInput }} query in the in the Knowledge base \"FAQBase\" and give the response from that Qdrant Base other wise tell no answer found. ",
"options": {},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 2.2
},
{
"id": "ba465b14-47c5-4f6a-9f75-8c55bae9fdac",
"name": "Google Gemini 채팅 모델",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
-320,
832
],
"parameters": {
"options": {}
},
"credentials": {
"googlePalmApi": {
"id": "qaiIdOkANhDFbjxS",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "9b779910-299b-4400-9146-f7b6201b1b6f",
"name": "단순 메모리",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
-128,
816
],
"parameters": {},
"typeVersion": 1.3
},
{
"id": "43ca808f-9c37-423d-8c4d-92abee33e3ea",
"name": "채팅 메시지 수신 시",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-800,
320
],
"webhookId": "3b6ac424-9648-4c8e-9c7d-da1c6a2dfc01",
"parameters": {
"mode": "webhook",
"public": true,
"options": {
"responseMode": "lastNode"
}
},
"typeVersion": 1.3,
"alwaysOutputData": false
},
{
"id": "89e2f425-c478-4c07-9921-7f70b5e9c952",
"name": "텍스트 분류기",
"type": "@n8n/n8n-nodes-langchain.textClassifier",
"position": [
-528,
304
],
"parameters": {
"options": {
"enableAutoFixing": true,
"systemPromptTemplate": "Please classify the text provided by the user into one of the following categories: {categories}, and use the provided formatting instructions below. Don't explain, and only output the json."
},
"inputText": "={{ $json.chatInput }}",
"categories": {
"categories": [
{
"category": "Incident ",
"description": "Something is broken or not working (e.g., system down, hardware failure) "
},
{
"category": "Request",
"description": " Asking for something new installation (e.g., software installation, access request)."
},
{
"category": "Other",
"description": " Anything that doesn't fit the above (e.g., general queries, spam)."
}
]
}
},
"typeVersion": 1.1,
"alwaysOutputData": true
},
{
"id": "fcf2c082-6764-4ef4-aecc-f6bc90c154c0",
"name": "Google Gemini 채팅 모델1",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
-608,
576
],
"parameters": {
"options": {}
},
"credentials": {
"googlePalmApi": {
"id": "qaiIdOkANhDFbjxS",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "002f60a9-f241-45a8-8be5-f02ed7db3475",
"name": "인시던트 생성",
"type": "n8n-nodes-base.serviceNow",
"position": [
0,
0
],
"parameters": {
"resource": "incident",
"operation": "create",
"authentication": "basicAuth",
"additionalFields": {},
"short_description": "={{ $('When chat message received').item.json.chatInput }}"
},
"credentials": {
"serviceNowBasicApi": {
"id": "opQJW0Ko8bXrntfQ",
"name": "ServiceNow Basic Auth account 2"
}
},
"typeVersion": 1
},
{
"id": "d8d72820-7352-4db7-bde0-7f34829dd0a2",
"name": "Google Gemini 채팅 모델2",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
272,
176
],
"parameters": {
"options": {}
},
"credentials": {
"googlePalmApi": {
"id": "qaiIdOkANhDFbjxS",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "c62d043f-e4fd-4bd9-b3bc-352cfe187e0b",
"name": "Qdrant 벡터 저장소",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
48,
832
],
"parameters": {
"mode": "retrieve-as-tool",
"options": {},
"toolDescription": "=Use this tool to get the actual information{{ $json.chatInput }} from the Qdrant Collection",
"qdrantCollection": {
"__rl": true,
"mode": "list",
"value": "FAQBase",
"cachedResultName": "FAQBase"
}
},
"credentials": {
"qdrantApi": {
"id": "TehVMtfBbOEqo45g",
"name": "QdrantApi account"
}
},
"typeVersion": 1.3
},
{
"id": "f503164a-6a5e-4f8e-ab13-b2d9291cdbc0",
"name": "필드 편집",
"type": "n8n-nodes-base.set",
"position": [
800,
672
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "807e969e-a61f-491b-a476-523eadf250b2",
"name": "sample_kb",
"type": "string",
"value": "Question: How to raise a ticket in an ITSM tool?\nAnswer: Go to the ITSM portal → Click on \"Create New Ticket\" → Fill in the required details (issue type, description, priority) → Submit the ticket.\n\nQuestion: How to check the status of a ticket?\nAnswer: Log in to the ITSM tool → Go to \"My Tickets\" or \"Ticket History\" → Check the current status (Open, In Progress, Resolved, Closed).\n\nQuestion: How to install software using ITSM?\nAnswer: Raise a \"Service Request\" ticket → Select \"Software Installation\" → Mention the software name and version → Submit → Wait for approval and installation by IT team.\n\nQuestion: How to reset your password?\nAnswer: Go to the ITSM portal → Click on \"Password Reset\" under Service Requests → Fill in your user ID → Submit → Follow the instructions sent via email."
}
]
}
},
"typeVersion": 3.4
},
{
"id": "081de542-a82b-4644-a6f3-354a308d6994",
"name": "Qdrant 벡터 저장소1",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
1008,
672
],
"parameters": {
"mode": "insert",
"options": {},
"qdrantCollection": {
"__rl": true,
"mode": "list",
"value": "FAQBase",
"cachedResultName": "FAQBase"
}
},
"credentials": {
"qdrantApi": {
"id": "TehVMtfBbOEqo45g",
"name": "QdrantApi account"
}
},
"typeVersion": 1.3
},
{
"id": "8e968996-0d89-484e-8566-0091c67ab3c0",
"name": "Google Gemini 임베딩",
"type": "@n8n/n8n-nodes-langchain.embeddingsGoogleGemini",
"position": [
928,
896
],
"parameters": {},
"credentials": {
"googlePalmApi": {
"id": "qaiIdOkANhDFbjxS",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "68801987-ab93-48da-892f-abec5ed16fc4",
"name": "'워크플로 실행' 클릭 시",
"type": "n8n-nodes-base.manualTrigger",
"position": [
624,
688
],
"parameters": {},
"typeVersion": 1
},
{
"id": "d61ab112-60d9-4fb2-a6c2-19ce0b54a84a",
"name": "Google Gemini 임베딩1",
"type": "@n8n/n8n-nodes-langchain.embeddingsGoogleGemini",
"position": [
96,
1056
],
"parameters": {},
"credentials": {
"googlePalmApi": {
"id": "qaiIdOkANhDFbjxS",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "6d54ec99-6148-491f-8c78-c6f8b797c135",
"name": "기본 데이터 로더",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
1200,
944
],
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "fda35534-f519-4ef1-b320-191c0879d3bc",
"name": "요약 체인",
"type": "@n8n/n8n-nodes-langchain.chainSummarization",
"position": [
272,
16
],
"parameters": {
"options": {}
},
"typeVersion": 2.1
},
{
"id": "4ce5cc1b-eafe-4fa8-8b0d-449bdc16ceed",
"name": "HTTP 요청",
"type": "n8n-nodes-base.httpRequest",
"position": [
-80,
320
],
"parameters": {
"url": "python.com",
"options": {}
},
"typeVersion": 4.2
},
{
"id": "03943db4-18b1-4fd8-915e-49b8b77d1d66",
"name": "스티커 노트",
"type": "n8n-nodes-base.stickyNote",
"position": [
336,
864
],
"parameters": {
"content": "Node Name: Qdrant Vector Store\nType: @n8n/n8n-nodes-langchain.vectorStoreQdrant\nPurpose: Retrieves relevant information from a vector database (Qdrant) based on semantic similarity to the user's input.\nKey Parameters:\nMode: retrieve-as-tool\nTool Description:\n=Use this tool to get the actual information{{ $json.chatInput }} from the Qdrant Collection\nCollection: FAQBase\nCredential Used: QdrantApi account\n\n Use Case:\nThis node is used to fetch contextually relevant answers from a pre-embedded FAQ knowledge base stored in Qdrant. It enhances the workflow by providing accurate, vector-based retrieval for user queries."
},
"typeVersion": 1
},
{
"id": "466ca2f3-9c5f-43d2-994c-fccf2279b67a",
"name": "스티커 노트1",
"type": "n8n-nodes-base.stickyNote",
"position": [
1328,
640
],
"parameters": {
"content": "Node Name: Qdrant Vector Store1\nType: @n8n/n8n-nodes-langchain.vectorStoreQdrant\nPurpose: Retrieves semantically similar information from the Qdrant vector database using embeddings.\nKey Parameters:\nMode: Default (not explicitly set, assumed retrieval)\nCollection: Uses the same Qdrant collection as other vector store nodes\nCredential Used: QdrantApi account\n Use Case:\nUsed to fetch relevant knowledge base entries or FAQs based on user input, leveraging vector similarity for intelligent matching."
},
"typeVersion": 1
},
{
"id": "78002e8e-2210-4856-a7d9-c35bf884c0f8",
"name": "스티커 노트2",
"type": "n8n-nodes-base.stickyNote",
"position": [
432,
160
],
"parameters": {
"content": "Node Name: Google Gemini Chat Model2\nType: @n8n/n8n-nodes-langchain.lmChatGoogleGemini\nPurpose: Generates enriched responses or follow-up actions after classification or retrieval.\n Key Parameters:\nModel: Gemini (PaLM)\nCredential Used: Google Gemini(PaLM) Api account\nPosition in Workflow: Typically used after classification or after Qdrant retrieval\n Use Case:\nThis node helps generate intelligent responses based on the classified input or retrieved FAQ data, enhancing the user experience with contextual replies."
},
"typeVersion": 1
},
{
"id": "736beef6-f3d1-4afa-9134-8c22b07381f1",
"name": "스티커 노트3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-64,
-208
],
"parameters": {
"content": "Node Name: Create an incident\nType: n8n-nodes-base.serviceNow\nPurpose: Automatically creates a new incident in ServiceNow when the classified category is Incident.\n Key Parameters:\nAuthentication: Basic Auth\nResource: incident\nOperation: create\nShort Description: Create Incident based on the input from the user\nUse Case:\nTriggered when the Text Classifier identifies the input as an Incident, this node logs the issue directly into ServiceNow for ITSM tracking and resolution."
},
"typeVersion": 1
},
{
"id": "e23ea4c6-36c5-4eb3-a070-cd66a42fa72c",
"name": "스티커 노트4",
"type": "n8n-nodes-base.stickyNote",
"position": [
1856,
576
],
"parameters": {},
"typeVersion": 1
},
{
"id": "73f86ac8-7297-4480-acdd-cda13629c85f",
"name": "스티커 노트5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-560,
96
],
"parameters": {
"width": 256,
"content": "Node Name: Text Classifier\nPurpose: Automatically classifies incoming user chat input into one of three predefined categories to route the workflow accordingly.\n Categories Defined:\nIncident\nDescription: Something is broken or not working (e.g., system down, hardware failure)\nRequest\nDescription: Asking for something new (e.g., software installation, access request)\nOther\nDescription: Anything that doesn't fit the above (e.g., general queries, spam)\n\nKey Parameters:\nInput Text:\n User will ask his query in the input\nOutput:\nReturns a clean JSON object with the classified category, which can be used to trigger conditional logic or route to ServiceNow, Gemini, or Qdrant nodes."
},
"typeVersion": 1
},
{
"id": "963a1038-3cc7-4c89-a00c-8d310a51d378",
"name": "스티커 노트7",
"type": "n8n-nodes-base.stickyNote",
"position": [
192,
512
],
"parameters": {
"content": "Node Name: AI Agent\nType: @n8n/n8n-nodes-langchain.lmChatGoogleGemini\nPurpose: Acts as a conversational agent powered by Google Gemini (PaLM), capable of understanding user input, generating intelligent responses, and interacting with other workflow components.\nCore Capabilities:\nUses Gemini LLM to interpret natural language queries.\nCan respond, route, or trigger actions based on user intent.\nIntegrates with classification, retrieval (Qdrant), and incident/request handling nodes.\n Key Parameters:\nModel: Gemini (PaLM)\nCredential Used: Google Gemini(PaLM) Api account\nInput: Typically receives chatInput or processed text from classifier or retrieval nodes.\n Use Case:\nThis node serves as the central intelligence of your workflow, enabling dynamic decision-making and contextual automation. It can:\nAnswer FAQs using retrieved data\nTrigger ServiceNow incidents or requests\nProvide enriched responses using LLM capabilities"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "27e4bb28-93dd-4fea-9053-e1482a89c58b",
"connections": {
"f503164a-6a5e-4f8e-ab13-b2d9291cdbc0": {
"main": [
[
{
"node": "081de542-a82b-4644-a6f3-354a308d6994",
"type": "main",
"index": 0
}
]
]
},
"9b779910-299b-4400-9146-f7b6201b1b6f": {
"ai_memory": [
[
{
"node": "850abce9-599a-413c-a436-60a008c0b5c9",
"type": "ai_memory",
"index": 0
}
]
]
},
"89e2f425-c478-4c07-9921-7f70b5e9c952": {
"main": [
[
{
"node": "002f60a9-f241-45a8-8be5-f02ed7db3475",
"type": "main",
"index": 0
}
],
[
{
"node": "4ce5cc1b-eafe-4fa8-8b0d-449bdc16ceed",
"type": "main",
"index": 0
}
],
[
{
"node": "850abce9-599a-413c-a436-60a008c0b5c9",
"type": "main",
"index": 0
}
]
]
},
"002f60a9-f241-45a8-8be5-f02ed7db3475": {
"main": [
[
{
"node": "fda35534-f519-4ef1-b320-191c0879d3bc",
"type": "main",
"index": 0
}
]
]
},
"6d54ec99-6148-491f-8c78-c6f8b797c135": {
"ai_document": [
[
{
"node": "081de542-a82b-4644-a6f3-354a308d6994",
"type": "ai_document",
"index": 0
}
]
]
},
"c62d043f-e4fd-4bd9-b3bc-352cfe187e0b": {
"ai_tool": [
[
{
"node": "850abce9-599a-413c-a436-60a008c0b5c9",
"type": "ai_tool",
"index": 0
}
]
]
},
"8e968996-0d89-484e-8566-0091c67ab3c0": {
"ai_embedding": [
[
{
"node": "081de542-a82b-4644-a6f3-354a308d6994",
"type": "ai_embedding",
"index": 0
}
]
]
},
"ba465b14-47c5-4f6a-9f75-8c55bae9fdac": {
"ai_languageModel": [
[
{
"node": "850abce9-599a-413c-a436-60a008c0b5c9",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"d61ab112-60d9-4fb2-a6c2-19ce0b54a84a": {
"ai_embedding": [
[
{
"node": "c62d043f-e4fd-4bd9-b3bc-352cfe187e0b",
"type": "ai_embedding",
"index": 0
}
]
]
},
"fcf2c082-6764-4ef4-aecc-f6bc90c154c0": {
"ai_languageModel": [
[
{
"node": "89e2f425-c478-4c07-9921-7f70b5e9c952",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"d8d72820-7352-4db7-bde0-7f34829dd0a2": {
"ai_languageModel": [
[
{
"node": "fda35534-f519-4ef1-b320-191c0879d3bc",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"43ca808f-9c37-423d-8c4d-92abee33e3ea": {
"main": [
[
{
"node": "89e2f425-c478-4c07-9921-7f70b5e9c952",
"type": "main",
"index": 0
}
]
]
},
"68801987-ab93-48da-892f-abec5ed16fc4": {
"main": [
[
{
"node": "f503164a-6a5e-4f8e-ab13-b2d9291cdbc0",
"type": "main",
"index": 0
}
]
]
}
}
}자주 묻는 질문
이 워크플로우를 어떻게 사용하나요?
위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.
이 워크플로우는 어떤 시나리오에 적합한가요?
고급 - 티켓 관리, AI RAG
유료인가요?
이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.
관련 워크플로우 추천
시각화 참조 라이브러리에서 n8n 노드를 탐색
可视化 참조 라이브러리에서 n8n 노드를 탐색
If
Ftp
Set
+
If
Ftp
Set
113 노드I versus AI
기타
Gemini RAG 파이프라인을 사용하여 문서 전문가 채팅 로봇을 구축
사용법 Gemini RAG 파이프라인을 사용하여 문서 전문가 채팅 로봇 구축
Set
Html
Filter
+
Set
Html
Filter
48 노드Lucas Peyrin
내부 위키
🤖 RAG, 제미니, Supabase를 사용하여 문서 전문가 로봇 생성
🤖 RAG, 제미니, Supabase를 사용하여 문서 전문가 로봇 생성
Set
Html
Filter
+
Set
Html
Filter
54 노드Lucas Peyrin
내부 위키
문서 RAG과 채팅 대리자: 구글 드라이브에서 Qdrant과 Mistral OCR로
문서 RAG 및 채팅 대리인: Google Drive에서 Qdrant과 Mistral OCR
If
Set
Code
+
If
Set
Code
40 노드DIGITAL BIZ TECH
내부 위키
AI 기반 SEO 블로그 작성기
사용Gemini, Scrapeless, Pinecone RAG으로 SEO 최적화된 블로그 콘텐츠 생성
Set
Code
Html
+
Set
Code
Html
28 노드scrapeless official
콘텐츠 제작
⚡AI驱动의YouTube播放列表및视频摘要与분석v2
AI YouTube播放列表与视频분석채팅봇
If
Set
Code
+
If
Set
Code
72 노드dmr
기타