Ollama 모델을 사용하여 환상을 검출
고급
이것은AI분야의자동화 워크플로우로, 18개의 노드를 포함합니다.주로 Set, Code, Merge, Filter, SplitOut 등의 노드를 사용하며인공지능 기술을 결합하여 스마트 자동화를 구현합니다. 専用 Ollama 모델을 사용하여 환각을 검출
사전 요구사항
- •AI 서비스 API Key(예: OpenAI, Anthropic 등)
사용된 노드 (18)
카테고리
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
"meta": {
"instanceId": "6e361bfcd1e8378c9b07774b22409c7eaea7080f01d5248da45077c0c6108b99",
"templateCredsSetupCompleted": true
},
"nodes": [
{
"id": "cbc036f7-b0e1-4eb4-94c3-7571c67a1efe",
"name": "Code",
"type": "n8n-nodes-base.code",
"position": [
-120,
40
],
"parameters": {
"mode": "runOnceForEachItem",
"jsCode": "// Get the input text\nconst text = $input.item.json.text;\n\n// Ensure text is not null or undefined\nif (!text) {\n throw new Error('Input text is empty');\n}\n\n// Function to split text into sentences while preserving dates and list items\nfunction splitIntoSentences(text) {\n const monthNames = '(?:Januar|Februar|März|April|Mai|Juni|Juli|August|September|Oktober|November|Dezember)';\n const datePattern = `(?:\\\\d{1,2}\\\\.\\\\s*(?:${monthNames}|\\\\d{1,2}\\\\.)\\\\s*\\\\d{2,4})`;\n \n // Split by sentence-ending punctuation, but not within dates or list items\n const regex = new RegExp(`(?<=[.!?])\\\\s+(?=[A-ZÄÖÜ]|$)(?!${datePattern}|\\\\s*[-•]\\\\s)`, 'g');\n \n return text.split(regex)\n .map(sentence => sentence.trim())\n .filter(sentence => sentence !== '');\n}\n\n// Split the text into sentences\nconst sentences = splitIntoSentences(text);\n\n// Output a single object with an array of sentences\nreturn { json: { sentences: sentences } };"
},
"typeVersion": 2
},
{
"id": "faae4740-a529-4275-be0e-b079c3bfde58",
"name": "Split Out1",
"type": "n8n-nodes-base.splitOut",
"position": [
340,
-180
],
"parameters": {
"options": {
"destinationFieldName": "claim"
},
"fieldToSplitOut": "sentences"
},
"typeVersion": 1
},
{
"id": "c3944f89-e267-4df0-8fc4-9281eac4e759",
"name": "Basic LLM Chain4",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
640,
-40
],
"parameters": {
"text": "=Document: {{ $('Merge1').item.json.facts }}\nClaim: {{ $json.claim }}",
"promptType": "define"
},
"typeVersion": 1.5
},
{
"id": "4e53c7f1-ab9f-42be-a253-9328b209fc68",
"name": "Ollama Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatOllama",
"position": [
700,
160
],
"parameters": {
"model": "bespoke-minicheck:latest",
"options": {}
},
"credentials": {
"ollamaApi": {
"id": "DeuK54dDNrCCnXHl",
"name": "Ollama account"
}
},
"typeVersion": 1
},
{
"id": "0252e47e-0e50-4024-92a0-74b554c8cbd1",
"name": "워크플로우 '테스트' 클릭 시",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-760,
40
],
"parameters": {},
"typeVersion": 1
},
{
"id": "8dd3f67c-e36f-4b03-8f9f-9b52ea23e0ed",
"name": "필드 편집",
"type": "n8n-nodes-base.set",
"position": [
-460,
40
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "55748f38-486f-495f-91ec-02c1d49acf18",
"name": "facts",
"type": "string",
"value": "Sara Beery came to MIT as an assistant professor in MIT’s Department of Electrical Engineering and Computer Science (EECS) eager to focus on ecological challenges. She has fashioned her research career around the opportunity to apply her expertise in computer vision, machine learning, and data science to tackle real-world issues in conservation and sustainability. Beery was drawn to the Institute’s commitment to “computing for the planet,” and set out to bring her methods to global-scale environmental and biodiversity monitoring.\n\nIn the Pacific Northwest, salmon have a disproportionate impact on the health of their ecosystems, and their complex reproductive needs have attracted Beery’s attention. Each year, millions of salmon embark on a migration to spawn. Their journey begins in freshwater stream beds where the eggs hatch. Young salmon fry (newly hatched salmon) make their way to the ocean, where they spend several years maturing to adulthood. As adults, the salmon return to the streams where they were born in order to spawn, ensuring the continuation of their species by depositing their eggs in the gravel of the stream beds. Both male and female salmon die shortly after supplying the river habitat with the next generation of salmon."
},
{
"id": "7d8e29db-4a4b-47c5-8c93-fda1e72137a7",
"name": "text",
"type": "string",
"value": "MIT's AI Pioneer Tackles Salmon Conservation Professor Sara Beery, a rising star in MIT's Department of Electrical Engineering and Computer Science, is revolutionizing ecological conservation through cutting-edge technology. Specializing in computer vision, machine learning, and data science, Beery has set her sights on addressing real-world sustainability challenges. Her current focus? The vital salmon populations of the Pacific Northwest. These fish play a crucial role in their ecosystems, with their complex life cycle spanning from freshwater streams to the open ocean and back again. Beery's innovative approach uses AI to monitor salmon migration patterns, providing unprecedented insights into their behavior and habitat needs. Beery's work has led to the development of underwater AI cameras that can distinguish between different salmon species with 99.9% accuracy. Her team has also created a revolutionary \"salmon translator\" that can predict spawning locations based on fish vocalizations. As climate change threatens these delicate ecosystems, Beery's research offers hope for more effective conservation strategies. By harnessing the power of technology, she's not just studying nature – she's actively working to preserve it for future generations."
}
]
}
},
"typeVersion": 3.4
},
{
"id": "25849b47-1550-464c-9e70-e787712e5765",
"name": "병합",
"type": "n8n-nodes-base.merge",
"position": [
1120,
-160
],
"parameters": {
"mode": "combine",
"options": {},
"combineBy": "combineByPosition"
},
"typeVersion": 3
},
{
"id": "eaea7ef4-a5d5-42b8-b262-e9a4bd6b7281",
"name": "필터",
"type": "n8n-nodes-base.filter",
"position": [
1340,
-160
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "20a4ffd6-0dd0-44f9-97bc-7d891f689f4d",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json.text }}",
"rightValue": "No"
}
]
}
},
"typeVersion": 2.2
},
{
"id": "9f074bdb-b1a6-4c36-be1c-203f78092657",
"name": "다른 워크플로우에 의해 실행 시",
"type": "n8n-nodes-base.executeWorkflowTrigger",
"position": [
-760,
-200
],
"parameters": {
"workflowInputs": {
"values": [
{
"name": "facts"
},
{
"name": "text"
}
]
}
},
"typeVersion": 1.1
},
{
"id": "0a08ac40-b497-4f6e-ac2c-2213a00d63f2",
"name": "집계",
"type": "n8n-nodes-base.aggregate",
"position": [
1560,
-160
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData"
},
"typeVersion": 1
},
{
"id": "b0d79886-01fc-43c7-88fe-a7a5b8b56b35",
"name": "Merge1",
"type": "n8n-nodes-base.merge",
"position": [
80,
-180
],
"parameters": {
"mode": "combine",
"options": {},
"combineBy": "combineByPosition"
},
"typeVersion": 3
},
{
"id": "82640408-9db4-4a12-9136-1a22985b609b",
"name": "Basic LLM Chain",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
1780,
-160
],
"parameters": {
"text": "={{ $json.data }}",
"messages": {
"messageValues": [
{
"message": "You are a fact-checking assistant. Your task is to analyze a list of statements, each accompanied by a \"yes\" or \"no\" indicating whether the statement is correct. Follow these guidelines:\n\n1. Review Process:\n a) Carefully read through each statement and its corresponding yes/no answer.\n b) Identify which statements are marked as incorrect (no).\n c) Ignore chit-chat sentences or statements that don't contain factual information.\n d) Count the total number of incorrect factual statements.\n\n2. Statement Classification:\n - Factual Statements: Contains specific information, data, or claims that can be verified.\n - Chit-chat/Non-factual: General comments, introductions, or transitions that don't present verifiable facts.\n\n3. Summary Structure:\n a) Overview: Provide a brief summary of the number of factual errors found.\n b) List of Problems: Enumerate the incorrect factual statements.\n c) Final Assessment: Offer a concise evaluation of the overall state of the article's factual accuracy.\n\n4. Prioritization:\n - Focus only on the factual statements marked as incorrect (no).\n - Ignore statements marked as correct (yes) and non-factual chit-chat.\n\n5. Feedback Tone:\n - Maintain a neutral and objective tone.\n - Present the information factually without additional commentary.\n\n6. Output Format:\n Present your summary in the following structure:\n\n ## Problem Summary\n [Number] incorrect factual statements were identified in the article.\n\n ## List of Incorrect Factual Statements\n 1. [First incorrect factual statement]\n 2. [Second incorrect factual statement]\n 3. [Third incorrect factual statement]\n (Continue listing all incorrect factual statements)\n\n ## Final Assessment\n Based on the number of incorrect factual statements:\n - If 0-1 errors: The article appears to be highly accurate and may only need minor factual adjustments.\n - If 2-3 errors: The article requires some revision to address these factual inaccuracies.\n - If 4 or more errors: The article needs significant revision to improve its factual accuracy.\n\nRemember, your role is to provide a clear, concise summary of the incorrect factual statements to help the writing team quickly understand what needs to be addressed. Ignore any chit-chat or non-factual statements in your analysis and summary."
}
]
},
"promptType": "define"
},
"typeVersion": 1.5
},
{
"id": "719054ef-0863-4e52-8390-23313c750aac",
"name": "Ollama Model",
"type": "@n8n/n8n-nodes-langchain.lmOllama",
"position": [
1880,
60
],
"parameters": {
"model": "qwen2.5:1.5b",
"options": {}
},
"credentials": {
"ollamaApi": {
"id": "DeuK54dDNrCCnXHl",
"name": "Ollama account"
}
},
"typeVersion": 1
},
{
"id": "6595eb25-32ce-49f5-a013-b87d7f3c65d3",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
1480,
-320
],
"parameters": {
"width": 860,
"height": 600,
"content": "## Build a summary\n\nThis is useful to run it in an agentic workflow. You may remove the summary part and return the raw array with the found issues."
},
"typeVersion": 1
},
{
"id": "9f6cde97-d2a7-44e4-b715-321ec1e68bd3",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-240,
-320
],
"parameters": {
"width": 760,
"height": 600,
"content": "## Split into sentences"
},
"typeVersion": 1
},
{
"id": "1ceb8f3c-c00b-4496-82b2-20578550c4be",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
540,
-320
],
"parameters": {
"width": 920,
"height": 600,
"content": "## Fact checking\n\nThis use a small ollama model that is specialized on that task: https://ollama.com/library/bespoke-minicheck\n\nYou have to install it before use with `ollama pull bespoke-minicheck`."
},
"typeVersion": 1
},
{
"id": "6e340925-d4e5-4fe1-ba9d-a89a23b68226",
"name": "Sticky Note3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-860,
-20
],
"parameters": {
"width": 600,
"height": 300,
"content": "## Test workflow\n"
},
"typeVersion": 1
},
{
"id": "5561d606-93d2-4887-839d-8ce2230ff30c",
"name": "Sticky Note4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-860,
-320
],
"parameters": {
"width": 600,
"height": 280,
"content": "## Entrypoint to use in other workflows\n"
},
"typeVersion": 1
}
],
"pinData": {},
"connections": {
"cbc036f7-b0e1-4eb4-94c3-7571c67a1efe": {
"main": [
[
{
"node": "b0d79886-01fc-43c7-88fe-a7a5b8b56b35",
"type": "main",
"index": 1
}
]
]
},
"25849b47-1550-464c-9e70-e787712e5765": {
"main": [
[
{
"node": "eaea7ef4-a5d5-42b8-b262-e9a4bd6b7281",
"type": "main",
"index": 0
}
]
]
},
"eaea7ef4-a5d5-42b8-b262-e9a4bd6b7281": {
"main": [
[
{
"node": "0a08ac40-b497-4f6e-ac2c-2213a00d63f2",
"type": "main",
"index": 0
}
]
]
},
"b0d79886-01fc-43c7-88fe-a7a5b8b56b35": {
"main": [
[
{
"node": "faae4740-a529-4275-be0e-b079c3bfde58",
"type": "main",
"index": 0
}
]
]
},
"0a08ac40-b497-4f6e-ac2c-2213a00d63f2": {
"main": [
[
{
"node": "82640408-9db4-4a12-9136-1a22985b609b",
"type": "main",
"index": 0
}
]
]
},
"faae4740-a529-4275-be0e-b079c3bfde58": {
"main": [
[
{
"node": "25849b47-1550-464c-9e70-e787712e5765",
"type": "main",
"index": 0
},
{
"node": "c3944f89-e267-4df0-8fc4-9281eac4e759",
"type": "main",
"index": 0
}
]
]
},
"8dd3f67c-e36f-4b03-8f9f-9b52ea23e0ed": {
"main": [
[
{
"node": "cbc036f7-b0e1-4eb4-94c3-7571c67a1efe",
"type": "main",
"index": 0
},
{
"node": "b0d79886-01fc-43c7-88fe-a7a5b8b56b35",
"type": "main",
"index": 0
}
]
]
},
"719054ef-0863-4e52-8390-23313c750aac": {
"ai_languageModel": [
[
{
"node": "82640408-9db4-4a12-9136-1a22985b609b",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"c3944f89-e267-4df0-8fc4-9281eac4e759": {
"main": [
[
{
"node": "25849b47-1550-464c-9e70-e787712e5765",
"type": "main",
"index": 1
}
]
]
},
"4e53c7f1-ab9f-42be-a253-9328b209fc68": {
"ai_languageModel": [
[
{
"node": "c3944f89-e267-4df0-8fc4-9281eac4e759",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"9f074bdb-b1a6-4c36-be1c-203f78092657": {
"main": [
[
{
"node": "cbc036f7-b0e1-4eb4-94c3-7571c67a1efe",
"type": "main",
"index": 0
},
{
"node": "b0d79886-01fc-43c7-88fe-a7a5b8b56b35",
"type": "main",
"index": 0
}
]
]
},
"0252e47e-0e50-4024-92a0-74b554c8cbd1": {
"main": [
[
{
"node": "8dd3f67c-e36f-4b03-8f9f-9b52ea23e0ed",
"type": "main",
"index": 0
}
]
]
}
}
}자주 묻는 질문
이 워크플로우를 어떻게 사용하나요?
위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.
이 워크플로우는 어떤 시나리오에 적합한가요?
고급 - 인공지능
유료인가요?
이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.
관련 워크플로우 추천
Anthropic Claude API를 사용하여 대량으로 튜토리얼 처리
Anthropic Claude API를 사용하여 배치로 튜토리얼 처리
If
Set
Code
+
If
Set
Code
39 노드Greg Evseev
빌딩 블록
n8n, Apify, OpenAI o3 자체托管 AI 깊이 연구 대리자 사용
n8n, Apify, OpenAI o3을 사용하여 자체托管 AI 깊이 연구 대리자
If
Set
Code
+
If
Set
Code
87 노드Jimleuk
인공지능
시각화 참조 라이브러리에서 n8n 노드를 탐색
可视化 참조 라이브러리에서 n8n 노드를 탐색
If
Ftp
Set
+
If
Ftp
Set
113 노드I versus AI
기타
API 아키텍처 추출기
API 아키텍처 추출기
If
Set
Code
+
If
Set
Code
88 노드Polina Medvedieva
엔지니어링
AI를 사용하여 WordPress 블로그 게시물에 태그 자동 추가
AI를 사용하여 WordPress 블로그 글에 자동 태그 지정
If
Set
Code
+
If
Set
Code
32 노드Ludwig
인공지능
자동화 블로그 작성 및 소셜 미디어 프로모션 에이전트
GPT-4, Perplexity 및 WordPress를 사용한 SEO 블로그 생성 + 소셜 미디어 자동화
Set
Code
Gmail
+
Set
Code
Gmail
79 노드LukaszB
디자인
워크플로우 정보
난이도
고급
노드 수18
카테고리1
노드 유형12
저자
Guido Zockoll
@gzockollI am an experienced software engineer and architect. I am now fully into the AI and No-Code world with several years of professional experience. I am based in Germany and help my colleagues and other people to get into the AI world.
외부 링크
n8n.io에서 보기 →
이 워크플로우 공유