평가 지표 예시:RAG 문서 관련성
고급
이것은Engineering, AI분야의자동화 워크플로우로, 26개의 노드를 포함합니다.주로 Set, Evaluation, GoogleSheets, ManualTrigger, Agent 등의 노드를 사용하며인공지능 기술을 결합하여 스마트 자동화를 구현합니다. 평가 지표 예시: RAG 문서 관련성
사전 요구사항
- •Google Sheets API 인증 정보
- •OpenAI API Key
사용된 노드 (26)
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
"meta": {
"instanceId": "bf40384a063e00f3b983f4f9bada22b57a8231a04c0fb48d363e26d7b0f2b7e7",
"templateCredsSetupCompleted": true
},
"nodes": [
{
"id": "86d6a658-f056-4434-9720-dfd3ca514cb3",
"name": "스티키 노트1",
"type": "n8n-nodes-base.stickyNote",
"position": [
420,
20
],
"parameters": {
"color": 7,
"width": 300,
"height": 180,
"content": "Check whether the documents returned a relevant to the question"
},
"typeVersion": 1
},
{
"id": "90aac144-164f-4961-89f8-4b8402177202",
"name": "스티키 노트3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1220,
-40
],
"parameters": {
"width": 200,
"height": 500,
"content": "## How it works\nThis template shows how to calculate a workflow evaluation metric: **retrieved document relevance** (i.e. whether the information retrieved from the vector store is relevant to the question).\n\nThe workflow takes a question and checks whether the information retrieved to answer it is relevant.\n\nYou can find more information on workflow evaluation [here](https://docs.n8n.io/advanced-ai/evaluations/overview), and other metric examples [here](https://docs.n8n.io/advanced-ai/evaluations/metric-based-evaluations/#2-calculate-metrics)."
},
"typeVersion": 1
},
{
"id": "f3970d8c-b205-4348-b375-d919d2f56f94",
"name": "스티키 노트4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-960,
280
],
"parameters": {
"color": 7,
"width": 220,
"height": 220,
"content": "Read in [this test dataset](https://docs.google.com/spreadsheets/d/1uuPS5cHtSNZ6HNLOi75A2m8nVWZrdBZ_Ivf58osDAS8/edit?gid=630157309#gid=630157309) of questions"
},
"typeVersion": 1
},
{
"id": "677b90c8-aa6f-4cc5-88df-d8e635b0bde2",
"name": "데이터셋 행 가져올 때",
"type": "n8n-nodes-base.evaluationTrigger",
"position": [
-900,
340
],
"parameters": {
"sheetName": {
"__rl": true,
"mode": "url",
"value": "https://docs.google.com/spreadsheets/d/1uuPS5cHtSNZ6HNLOi75A2m8nVWZrdBZ_Ivf58osDAS8/edit?gid=630157309#gid=630157309"
},
"documentId": {
"__rl": true,
"mode": "url",
"value": "https://docs.google.com/spreadsheets/d/1uuPS5cHtSNZ6HNLOi75A2m8nVWZrdBZ_Ivf58osDAS8/edit?gid=630157309#gid=630157309"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "bpr2LoSELMlxpwnN",
"name": "Google Sheets account David"
}
},
"typeVersion": 4.6
},
{
"id": "c381a3c3-12b6-44fe-a2ed-6adf6f997534",
"name": "평가 중?",
"type": "n8n-nodes-base.evaluation",
"position": [
-60,
200
],
"parameters": {
"operation": "checkIfEvaluating"
},
"typeVersion": 4.6
},
{
"id": "e1cf0122-c668-41d2-9316-a173d425d897",
"name": "채팅 메시지 수신 시",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-900,
100
],
"webhookId": "d53bc846-db11-446c-8436-9d25dc265663",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "b521aa40-c8da-4485-b834-50a129c27d3c",
"name": "채팅 형식 맞추기",
"type": "n8n-nodes-base.set",
"position": [
-680,
340
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "93f89095-7918-45ad-aa74-a0bbcf0d5788",
"name": "chatInput",
"type": "string",
"value": "={{ $json.question }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "d0170cbd-ba01-45db-a405-aec943bf1608",
"name": "스티키 노트",
"type": "n8n-nodes-base.stickyNote",
"position": [
-80,
100
],
"parameters": {
"color": 7,
"width": 150,
"height": 260,
"content": "Only calculate metrics if we're evaluating, to reduce costs"
},
"typeVersion": 1
},
{
"id": "a21f98f0-25eb-44cc-a04a-33181d7e5288",
"name": "채팅 응답 반환",
"type": "n8n-nodes-base.noOp",
"position": [
220,
340
],
"parameters": {},
"typeVersion": 1
},
{
"id": "fd8628a1-9f31-4f42-88df-b87eda7216ee",
"name": "지표 설정",
"type": "n8n-nodes-base.evaluation",
"position": [
820,
80
],
"parameters": {
"metrics": {
"assignments": [
{
"id": "230589eb-34c8-4d10-9296-4a78d673077a",
"name": "similarity",
"type": "number",
"value": "={{ $json.message.content.score }}"
}
]
},
"operation": "setMetrics"
},
"typeVersion": 4.6
},
{
"id": "eefe3a5a-722a-4cce-b84b-65c0520a225f",
"name": "데이터셋 가져오기",
"type": "n8n-nodes-base.googleSheets",
"position": [
-680,
-620
],
"parameters": {
"options": {},
"sheetName": {
"__rl": true,
"mode": "url",
"value": "https://docs.google.com/spreadsheets/d/1uuPS5cHtSNZ6HNLOi75A2m8nVWZrdBZ_Ivf58osDAS8/edit?gid=630157309#gid=630157309"
},
"documentId": {
"__rl": true,
"mode": "url",
"value": "https://docs.google.com/spreadsheets/d/1uuPS5cHtSNZ6HNLOi75A2m8nVWZrdBZ_Ivf58osDAS8/edit?gid=630157309#gid=630157309"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "bpr2LoSELMlxpwnN",
"name": "Google Sheets account David"
}
},
"typeVersion": 4.5
},
{
"id": "ea83d68c-f499-4864-918c-5ccaccf555a5",
"name": "중복 제거",
"type": "n8n-nodes-base.removeDuplicates",
"position": [
-460,
-620
],
"parameters": {
"compare": "selectedFields",
"options": {},
"fieldsToCompare": "document_id"
},
"typeVersion": 2
},
{
"id": "6bf59dc8-fe59-49cf-971f-e22dac5d0500",
"name": "심플 벡터 스토어",
"type": "@n8n/n8n-nodes-langchain.vectorStoreInMemory",
"position": [
-240,
-620
],
"parameters": {
"mode": "insert",
"memoryKey": "rag_evaluation_demo",
"clearStore": true
},
"typeVersion": 1.1
},
{
"id": "66dd59b0-b2e4-43c9-b1f5-7f5a65568f5e",
"name": "임베딩 OpenAI",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
-300,
-400
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "Ag9qPAsY7lpIGkvC",
"name": "JPs n8n openAI key"
}
},
"typeVersion": 1.2
},
{
"id": "213b230d-0f40-4e71-b0bf-4783274e2cdb",
"name": "기본 데이터 로더",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
-100,
-380
],
"parameters": {
"options": {},
"jsonData": "={{ $json.document_text }}",
"jsonMode": "expressionData"
},
"typeVersion": 1
},
{
"id": "64ec7e8c-63f9-4198-9e8d-61345c564c13",
"name": "재귀 문자 텍스트 분할기",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
-20,
-220
],
"parameters": {
"options": {}
},
"typeVersion": 1
},
{
"id": "c561f2ce-ef05-4f42-9b6e-6fabd12d6d23",
"name": "스티키 노트2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-980,
-700
],
"parameters": {
"color": 7,
"width": 1180,
"height": 620,
"content": "### Setup: Populate vector DB\nRun this once before running the main workflow. It inserts the documents from the dataset in the vector store, so they can be queried by the agent below"
},
"typeVersion": 1
},
{
"id": "4a7de6bd-17ac-40df-9b27-2d8f6fdbeb07",
"name": "'워크플로 실행' 클릭 시",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-900,
-620
],
"parameters": {},
"typeVersion": 1
},
{
"id": "a0f6211f-6202-462c-8fa3-52e10ad89b5d",
"name": "문서 관련성 지표 계산",
"type": "@n8n/n8n-nodes-langchain.openAi",
"position": [
440,
80
],
"parameters": {
"modelId": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini",
"cachedResultName": "GPT-4O-MINI"
},
"options": {},
"messages": {
"values": [
{
"role": "system",
"content": "=You are a teacher evaluating the relevance of student responses to questions.\n\nYou will be given a QUESTION and one or more FACTS provided by a student. Your task is to determine whether these FACTS are relevant to answering the QUESTION.\n\nGrading criteria:\n(1) Evaluate whether the provided FACTS contain information that is relevant to answering the QUESTION\n(2) A FACT is relevant if it contains keywords or concepts semantically related to the QUESTION\n(3) A FACT is relevant if it provides context, examples, or explanations that address any aspect of the QUESTION\n(4) A FACT may contain some unrelated information and still be considered relevant if it also contains information that satisfies criteria (2) or (3)\n\nScoring:\n- Score 1: At least one of the provided FACTS is relevant to the QUESTION\n- Score 0: All provided FACTS are completely unrelated to the QUESTION\n\nEvaluation process:\n1. Identify the key concepts and requirements in the QUESTION\n2. Examine each provided FACT for keywords or concepts related to these key elements\n3. Consider semantic relationships, not just exact keyword matches\n4. Determine if any FACT contributes useful information toward answering the QUESTION\n5. Provide your reasoning in a detailed, step-by-step manner first\n6. Then create a one-sentence summary of your reasoning\n7. Avoid stating your conclusion at the beginning of your extended reasoning\n\nOutput format:\n{\n \"extended_reasoning\": \"<detailed step-by-step analysis of how you evaluated the relevance>\",\n \"reasoning_summary\": \"<one sentence summary of your conclusion>\",\n \"score\": <number: either 0 or 1>\n}\n\nExamples:\n\nQUESTION: \"What factors contributed to the fall of the Roman Empire?\"\nFACTS: \"The Roman Empire fell due to economic problems, military failures, and political corruption. Germanic tribes invaded from the north while the empire was weakened.\"\nEVALUATION: This would receive a score of 1 because the facts directly address causes of the Roman Empire's fall.\n\nQUESTION: \"What factors contributed to the fall of the Roman Empire?\"\nFACTS: \"The Pythagorean theorem states that a² + b² = c² in a right triangle. Jupiter is the largest planet in our solar system.\"\nEVALUATION: This would receive a score of 0 because neither fact relates to the Roman Empire or its fall."
},
{
"content": "=QUESTION: {{ $('When fetching a dataset row').item.json.question }}\n\nFACTS: \n{{ $json.documents }}"
}
]
},
"jsonOutput": true
},
"credentials": {
"openAiApi": {
"id": "Ag9qPAsY7lpIGkvC",
"name": "JPs n8n openAI key"
}
},
"typeVersion": 1.8
},
{
"id": "b01d3427-4907-4715-8c15-669500012f89",
"name": "AI 에이전트",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
-420,
200
],
"parameters": {
"options": {
"systemMessage": "You are a helpful assistant. Answer the user's questions using information from your vector knowledge base only.",
"returnIntermediateSteps": true
}
},
"typeVersion": 1.9
},
{
"id": "97e2db38-0114-449f-bb41-0ab490fc7327",
"name": "OpenAI 채팅 모델",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
-480,
440
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "Ag9qPAsY7lpIGkvC",
"name": "JPs n8n openAI key"
}
},
"typeVersion": 1.2
},
{
"id": "5b3679ab-b0a6-4461-9276-89eddb16f699",
"name": "문서 추출",
"type": "n8n-nodes-base.set",
"position": [
220,
80
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "2d771c52-6637-4af0-9ff7-c87368041bfd",
"name": "documents",
"type": "string",
"value": "={{ $json.intermediateSteps.filter(x => x.action.tool == 'vector_knowledge_base')[0].observation }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "0e4c4512-7b9f-4881-8ac7-4c7c24a4a446",
"name": "심플 벡터 스토어1",
"type": "@n8n/n8n-nodes-langchain.vectorStoreInMemory",
"position": [
-260,
440
],
"parameters": {
"mode": "retrieve-as-tool",
"toolName": "vector_knowledge_base",
"memoryKey": "rag_evaluation_demo",
"toolDescription": "Source of all knowledge to work with"
},
"typeVersion": 1.1
},
{
"id": "edde6c75-dea5-46cc-937e-68e4a925559b",
"name": "임베딩 OpenAI1",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
-220,
620
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "Ag9qPAsY7lpIGkvC",
"name": "JPs n8n openAI key"
}
},
"typeVersion": 1.2
},
{
"id": "e23289e7-a769-4aae-82e6-b7f9e6d903f0",
"name": "스티키 노트6",
"type": "n8n-nodes-base.stickyNote",
"position": [
-980,
-40
],
"parameters": {
"color": 7,
"width": 2000,
"height": 820,
"content": "### Main workflow"
},
"typeVersion": 1
},
{
"id": "c90baefc-22bd-4782-a8eb-236bfb1d2751",
"name": "스티키 노트5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-440,
120
],
"parameters": {
"color": 7,
"width": 300,
"height": 200,
"content": "Make sure to enable 'Return intermediate steps' in the agent, to get the list of executed tools"
},
"typeVersion": 1
}
],
"pinData": {},
"connections": {
"b01d3427-4907-4715-8c15-669500012f89": {
"main": [
[
{
"node": "c381a3c3-12b6-44fe-a2ed-6adf6f997534",
"type": "main",
"index": 0
}
]
]
},
"c381a3c3-12b6-44fe-a2ed-6adf6f997534": {
"main": [
[
{
"node": "5b3679ab-b0a6-4461-9276-89eddb16f699",
"type": "main",
"index": 0
}
],
[
{
"node": "a21f98f0-25eb-44cc-a04a-33181d7e5288",
"type": "main",
"index": 0
}
]
]
},
"eefe3a5a-722a-4cce-b84b-65c0520a225f": {
"main": [
[
{
"node": "ea83d68c-f499-4864-918c-5ccaccf555a5",
"type": "main",
"index": 0
}
]
]
},
"66dd59b0-b2e4-43c9-b1f5-7f5a65568f5e": {
"ai_embedding": [
[
{
"node": "6bf59dc8-fe59-49cf-971f-e22dac5d0500",
"type": "ai_embedding",
"index": 0
}
]
]
},
"5b3679ab-b0a6-4461-9276-89eddb16f699": {
"main": [
[
{
"node": "a0f6211f-6202-462c-8fa3-52e10ad89b5d",
"type": "main",
"index": 0
}
]
]
},
"b521aa40-c8da-4485-b834-50a129c27d3c": {
"main": [
[
{
"node": "b01d3427-4907-4715-8c15-669500012f89",
"type": "main",
"index": 0
}
]
]
},
"97e2db38-0114-449f-bb41-0ab490fc7327": {
"ai_languageModel": [
[
{
"node": "b01d3427-4907-4715-8c15-669500012f89",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"ea83d68c-f499-4864-918c-5ccaccf555a5": {
"main": [
[
{
"node": "6bf59dc8-fe59-49cf-971f-e22dac5d0500",
"type": "main",
"index": 0
}
]
]
},
"edde6c75-dea5-46cc-937e-68e4a925559b": {
"ai_embedding": [
[
{
"node": "0e4c4512-7b9f-4881-8ac7-4c7c24a4a446",
"type": "ai_embedding",
"index": 0
}
]
]
},
"213b230d-0f40-4e71-b0bf-4783274e2cdb": {
"ai_document": [
[
{
"node": "6bf59dc8-fe59-49cf-971f-e22dac5d0500",
"type": "ai_document",
"index": 0
}
]
]
},
"0e4c4512-7b9f-4881-8ac7-4c7c24a4a446": {
"ai_tool": [
[
{
"node": "b01d3427-4907-4715-8c15-669500012f89",
"type": "ai_tool",
"index": 0
}
]
]
},
"e1cf0122-c668-41d2-9316-a173d425d897": {
"main": [
[
{
"node": "b01d3427-4907-4715-8c15-669500012f89",
"type": "main",
"index": 0
}
]
]
},
"677b90c8-aa6f-4cc5-88df-d8e635b0bde2": {
"main": [
[
{
"node": "b521aa40-c8da-4485-b834-50a129c27d3c",
"type": "main",
"index": 0
}
]
]
},
"a0f6211f-6202-462c-8fa3-52e10ad89b5d": {
"main": [
[
{
"node": "fd8628a1-9f31-4f42-88df-b87eda7216ee",
"type": "main",
"index": 0
}
]
]
},
"64ec7e8c-63f9-4198-9e8d-61345c564c13": {
"ai_textSplitter": [
[
{
"node": "213b230d-0f40-4e71-b0bf-4783274e2cdb",
"type": "ai_textSplitter",
"index": 0
}
]
]
},
"4a7de6bd-17ac-40df-9b27-2d8f6fdbeb07": {
"main": [
[
{
"node": "eefe3a5a-722a-4cce-b84b-65c0520a225f",
"type": "main",
"index": 0
}
]
]
}
}
}자주 묻는 질문
이 워크플로우를 어떻게 사용하나요?
위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.
이 워크플로우는 어떤 시나리오에 적합한가요?
고급 - 엔지니어링, 인공지능
유료인가요?
이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.
관련 워크플로우 추천
OpenAI를 사용하여 RAG 응답 정확성을 평가합니다:문서 기본 지표
OpenAI를 사용하여 RAG 응답 정확성을 평가: 문서 기본 지표
Set
Evaluation
Http Request
+
Set
Evaluation
Http Request
25 노드Jimleuk
엔지니어링
평가 지표 예시:정확성(AI에 의해 판단)
평가 지표 예시: 정확성 (AI가 판단)
Set
Evaluation
Agent
+
Set
Evaluation
Agent
13 노드David Roberts
엔지니어링
평가 지표 예시:툴이 호출되었는지 확인
평가 지표 예시: 도구 호출 여부 확인
Set
Evaluation
Agent
+
Set
Evaluation
Agent
15 노드David Roberts
엔지니어링
시각화 참조 라이브러리에서 n8n 노드를 탐색
可视化 참조 라이브러리에서 n8n 노드를 탐색
If
Ftp
Set
+
If
Ftp
Set
113 노드I versus AI
기타
AI 스마트 어시스턴트: Supabase 스토리지 및 Google Drive 파일과 대화
AI스마트어시스턴트:与Supabase存储및Google Drive文件对话
If
Set
Wait
+
If
Set
Wait
62 노드Mark Shcherbakov
엔지니어링
텍스트, 음성, 이미지 및 PDF를 지원하는 AI 기반 WhatsApp 챗봇(RAG)
텍스트, 음성, 이미지 및 PDF 지원 AI 기반 WhatsApp 챗봇(RAG)
Set
Code
Switch
+
Set
Code
Switch
35 노드NovaNode
엔지니어링