8
n8n 한국어amn8n.com

18 구매 트렌드 분석

중급

이것은Market Research, AI Summarization분야의자동화 워크플로우로, 15개의 노드를 포함합니다.주로 GoogleSheets, McpClientTool, ManualTrigger, Agent, LmChatOpenAi 등의 노드를 사용하며. Bright Data, OpenAI, Google Sheets를 사용한 Amazon 구매 트렌드 분석

사전 요구사항
  • Google Sheets API 인증 정보
  • OpenAI API Key
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
  "id": "FtPQQBuZOQRWsWkH",
  "meta": {
    "instanceId": "60046904b104f0f72b2629a9d88fe9f676be4035769f1f08dad1dd38a76b9480",
    "templateCredsSetupCompleted": true
  },
  "name": "18 Analyze Purchase Trends",
  "tags": [],
  "nodes": [
    {
      "id": "1ab29609-739c-4f42-b398-d40e275d2531",
      "name": "워크플로 실행 시",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        0,
        0
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "a4117e05-67bc-42be-ba31-4b75be46ef9f",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        480,
        260
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8sEyPDkC5p4w4Jha",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "99c92ba4-9af0-4808-8f5a-5729ab7c922b",
      "name": "Google Sheets에서 아마존 URL 가져오기",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        220,
        0
      ],
      "parameters": {
        "options": {},
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": "gid=0",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/12ouaPrMp5HEKKctEhVmjmIBVSFu75P4NFFe20XKH9mM/edit#gid=0",
          "cachedResultName": "Sheet1"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "12ouaPrMp5HEKKctEhVmjmIBVSFu75P4NFFe20XKH9mM",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/12ouaPrMp5HEKKctEhVmjmIBVSFu75P4NFFe20XKH9mM/edit?usp=drivesdk",
          "cachedResultName": "Product purchase trends"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "r2mDaisH6e9VkwHl",
          "name": "Google Sheets account"
        }
      },
      "typeVersion": 4.6
    },
    {
      "id": "a9a77a78-e60c-4329-ba4a-697c806bbf5c",
      "name": "아마존 제품 분석기 (AI 에이전트)",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        500,
        0
      ],
      "parameters": {
        "text": "=extract the unit sold, current price, stock availability, review count & rating, sales rank and based on it's purchasing performance give it rating out of 10.\nBelow is the url of the amazon product:\n{{ $json.url }}",
        "options": {},
        "promptType": "define",
        "hasOutputParser": true
      },
      "typeVersion": 2
    },
    {
      "id": "353646b6-e2cb-42fd-aa8d-9d3c1693ef25",
      "name": "도구: MCP 클라이언트 (Bright Data)",
      "type": "n8n-nodes-mcp.mcpClientTool",
      "position": [
        660,
        260
      ],
      "parameters": {
        "toolName": "web_data_amazon_product",
        "operation": "executeTool",
        "toolParameters": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('Tool_Parameters', ``, 'json') }}"
      },
      "credentials": {
        "mcpClientApi": {
          "id": "eqq94k789oJCd6jU",
          "name": "MCP Client (STDIO) account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "8ef0d68c-c9f6-4fda-8421-318da2875715",
      "name": "제품 인사이트로 시트 업데이트",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        1040,
        0
      ],
      "parameters": {
        "columns": {
          "value": {
            "Ranking": "={{ $json.output[0].performance_rating }}",
            "Sales rank": "={{ $json.output[0].sales_rank }}",
            "Units sold": "={{ $json.output[0].units_sold_last_month }}",
            "row_number": "={{ $('Fetch Amazon URLs from Google Sheets').item.json.row_number }}",
            "Current price": "={{ $json.output[0].current_price }}",
            "Stock availability": "={{ $json.output[0].stock_status }}",
            "Review count & rating": "={{ $json.output[0].review_count }} & {{ $json.output[0].rating }}"
          },
          "schema": [
            {
              "id": "url",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "url",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Units sold",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Units sold",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Current price",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Current price",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Stock availability",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Stock availability",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Review count & rating",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Review count & rating",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Sales rank",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Sales rank",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "Ranking",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "Ranking",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "row_number",
              "type": "string",
              "display": true,
              "removed": false,
              "readOnly": true,
              "required": false,
              "displayName": "row_number",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "defineBelow",
          "matchingColumns": [
            "row_number"
          ],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        },
        "options": {},
        "operation": "update",
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": "gid=0",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/12ouaPrMp5HEKKctEhVmjmIBVSFu75P4NFFe20XKH9mM/edit#gid=0",
          "cachedResultName": "Sheet1"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "12ouaPrMp5HEKKctEhVmjmIBVSFu75P4NFFe20XKH9mM",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/12ouaPrMp5HEKKctEhVmjmIBVSFu75P4NFFe20XKH9mM/edit?usp=drivesdk",
          "cachedResultName": "Product purchase trends"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "r2mDaisH6e9VkwHl",
          "name": "Google Sheets account"
        }
      },
      "typeVersion": 4.6
    },
    {
      "id": "f2b27f36-4860-4b98-8dac-1ca89192d7a4",
      "name": "스티키 노트",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -40,
        -620
      ],
      "parameters": {
        "color": 5,
        "width": 420,
        "height": 820,
        "content": "### 🔹 **SECTION 1: Trigger & Read Product URLs**\n\n**Nodes Combined:**\n\n* `Start Workflow (Manual Trigger)`\n* `Fetch Amazon URLs from Google Sheets`\n\n📌 **What Happens Here:**\nWhen you click **\"Execute workflow\"**, the automation kicks off. It reads a list of Amazon product URLs from a connected **Google Sheet** — each URL representing a product you want to analyze.\n\n🧠 **Why This Is Useful:**\nYou don't have to input product links manually every time. Just **paste your URLs in the Google Sheet**, and this step will automatically fetch them all. Perfect for monitoring dozens (or hundreds) of products.\n\n📋 **Fields Expected in Google Sheet:**\n\n* `URL` (Amazon product link)\n* *(Other columns will be auto-filled later)*\n\n🔧 **Icons Involved:**\n\n* ⚡ `Trigger`\n* 📄 `Google Sheets`\n\n---\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "20d538a0-6bec-4e2f-9d53-55a10c7f2236",
      "name": "스티키 노트1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        460,
        -1120
      ],
      "parameters": {
        "color": 3,
        "width": 340,
        "height": 1320,
        "content": "### 🤖 **SECTION 2: AI Agent + Scraper + Parser**\n\n**Node: `Amazon Product Analyzer (AI Agent)` + Sub-nodes:**\n\n* `OpenAI Chat Model`\n* `MCP Client (Bright Data)`\n* `Structured Output Parser`\n\n📌 **What Happens Here:**\n\n1. 🔍 The **AI Agent** passes each product URL to:\n\n   * 🛰️ The **MCP Client**, which uses **Bright Data's Mobile Carrier Proxy** to scrape data safely from Amazon (bypassing detection).\n   * 📊 The **data collected** includes:\n\n     * Units sold last month\n     * Current price\n     * Stock availability\n     * Review count\n     * Average rating\n     * Sales rank\n\n2. 💬 Then, the **OpenAI Chat Model** intelligently evaluates this data and gives a **performance rating out of 10**, simulating a product analyst's decision-making.\n\n3. 📦 Finally, the **Structured Output Parser** transforms the AI’s natural language response into **clean JSON fields** that n8n can write back to your Google Sheet.\n\n🧠 **Why This Is Useful:**\nThis section automates **competitive product research**, letting you know which products are worth stocking, promoting, or avoiding — without manually checking every listing.\n\n🛠️ **Icons Involved:**\n\n* 🤖 AI Agent\n* 🧠 OpenAI Chat\n* 🌐 MCP Scraper (Bright Data)\n* 📤 JSON Parser\n\n---\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "d6bd1b54-2b77-490f-acf8-001c94affccd",
      "name": "스티키 노트2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        960,
        -720
      ],
      "parameters": {
        "color": 6,
        "width": 260,
        "height": 920,
        "content": "### 📈 **SECTION 3: Update Google Sheet with Final Data**\n\n**Node: `Update Sheet with Product Insights`**\n\n📌 **What Happens Here:**\nOnce scraping and AI evaluation are done, the workflow **updates the original Google Sheet** with all the new fields:\n\n| Column                  | Description                                        |\n| ----------------------- | -------------------------------------------------- |\n| `Units Sold`            | Estimated number of units sold in the last 30 days |\n| `Current Price`         | Latest listed price on Amazon                      |\n| `Stock Availability`    | Whether product is in stock, and how many units    |\n| `Review Count & Rating` | Total reviews and average rating                   |\n| `Sales Rank`            | Rank in overall and subcategory                    |\n| `Performance Rating`    | AI-generated score out of 10 based on all factors  |\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "c696695f-78b4-4baf-83b6-7939311bf1b0",
      "name": "스티키 노트5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1280,
        -720
      ],
      "parameters": {
        "color": 7,
        "width": 380,
        "height": 240,
        "content": "## I’ll receive a tiny commission if you join Bright Data through this link—thanks for fueling more free content!\n\n### https://get.brightdata.com/1tndi4600b25"
      },
      "typeVersion": 1
    },
    {
      "id": "67d803eb-9a83-4fcd-8c73-e3f0f5bf6285",
      "name": "스티키 노트9",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1820,
        -620
      ],
      "parameters": {
        "color": 4,
        "width": 1300,
        "height": 320,
        "content": "=======================================\n            WORKFLOW ASSISTANCE\n=======================================\nFor any questions or support, please contact:\n    Yaron@nofluff.online\n\nExplore more tips and tutorials here:\n   - YouTube: https://www.youtube.com/@YaronBeen/videos\n   - LinkedIn: https://www.linkedin.com/in/yaronbeen/\n=======================================\n"
      },
      "typeVersion": 1
    },
    {
      "id": "adf14924-8511-4c24-878b-0c766f869ec0",
      "name": "스티키 노트4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1820,
        -280
      ],
      "parameters": {
        "color": 4,
        "width": 1289,
        "height": 2298,
        "content": "## 🚀 Amazon Product Performance Analyzer Workflow\n\n**Automate product research + scoring using AI, scraping, and Google Sheets.**\n\n---\n\n### 🔹 **SECTION 1: Trigger & Read Product URLs**\n\n**Nodes Combined:**\n\n* `Start Workflow (Manual Trigger)`\n* `Fetch Amazon URLs from Google Sheets`\n\n📌 **What Happens Here:**\nWhen you click **\"Execute workflow\"**, the automation kicks off. It reads a list of Amazon product URLs from a connected **Google Sheet** — each URL representing a product you want to analyze.\n\n🧠 **Why This Is Useful:**\nYou don't have to input product links manually every time. Just **paste your URLs in the Google Sheet**, and this step will automatically fetch them all. Perfect for monitoring dozens (or hundreds) of products.\n\n📋 **Fields Expected in Google Sheet:**\n\n* `URL` (Amazon product link)\n* *(Other columns will be auto-filled later)*\n\n🔧 **Icons Involved:**\n\n* ⚡ `Trigger`\n* 📄 `Google Sheets`\n\n---\n\n### 🤖 **SECTION 2: AI Agent + Scraper + Parser**\n\n**Node: `Amazon Product Analyzer (AI Agent)` + Sub-nodes:**\n\n* `OpenAI Chat Model`\n* `MCP Client (Bright Data)`\n* `Structured Output Parser`\n\n📌 **What Happens Here:**\n\n1. 🔍 The **AI Agent** passes each product URL to:\n\n   * 🛰️ The **MCP Client**, which uses **Bright Data's Mobile Carrier Proxy** to scrape data safely from Amazon (bypassing detection).\n   * 📊 The **data collected** includes:\n\n     * Units sold last month\n     * Current price\n     * Stock availability\n     * Review count\n     * Average rating\n     * Sales rank\n\n2. 💬 Then, the **OpenAI Chat Model** intelligently evaluates this data and gives a **performance rating out of 10**, simulating a product analyst's decision-making.\n\n3. 📦 Finally, the **Structured Output Parser** transforms the AI’s natural language response into **clean JSON fields** that n8n can write back to your Google Sheet.\n\n🧠 **Why This Is Useful:**\nThis section automates **competitive product research**, letting you know which products are worth stocking, promoting, or avoiding — without manually checking every listing.\n\n🛠️ **Icons Involved:**\n\n* 🤖 AI Agent\n* 🧠 OpenAI Chat\n* 🌐 MCP Scraper (Bright Data)\n* 📤 JSON Parser\n\n---\n\n### 📈 **SECTION 3: Update Google Sheet with Final Data**\n\n**Node: `Update Sheet with Product Insights`**\n\n📌 **What Happens Here:**\nOnce scraping and AI evaluation are done, the workflow **updates the original Google Sheet** with all the new fields:\n\n| Column                  | Description                                        |\n| ----------------------- | -------------------------------------------------- |\n| `Units Sold`            | Estimated number of units sold in the last 30 days |\n| `Current Price`         | Latest listed price on Amazon                      |\n| `Stock Availability`    | Whether product is in stock, and how many units    |\n| `Review Count & Rating` | Total reviews and average rating                   |\n| `Sales Rank`            | Rank in overall and subcategory                    |\n| `Performance Rating`    | AI-generated score out of 10 based on all factors  |\n\n📈 **Why This Is Useful:**\nNow your spreadsheet becomes a **live product intelligence dashboard**, perfect for:\n\n* 👨‍💼 Product managers deciding what to sell\n* 📦 Suppliers checking demand\n* 📊 Marketers picking hot products to promote\n\n🛠️ **Icon Involved:**\n\n* 📝 Google Sheets (Update Node)\n\n---\n\n## 💡 Final Outcome:\n\nYour workflow is now a **smart Amazon trend analyzer**, delivering:\n\n* 🔁 Repeated product evaluation at scale\n* ⏱️ Instant product scoring without manual research\n* 📊 Clean, structured data ready for decision-making\n\n---\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "14b5ab60-1fac-4728-8ab3-b52f3ef476cd",
      "name": "자동 수정 출력 파서",
      "type": "@n8n/n8n-nodes-langchain.outputParserAutofixing",
      "position": [
        800,
        260
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "312c6667-4ee1-4a44-85a5-99e612928451",
      "name": "OpenAI Chat Model1",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        760,
        480
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8sEyPDkC5p4w4Jha",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "a238a9f8-74ac-4a40-96fb-20c60f9b9dd9",
      "name": "구조화된 출력 파서",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        940,
        480
      ],
      "parameters": {
        "jsonSchemaExample": "[\n  {\n    \"product_name\": \"UGREEN Revodok 105 USB-C Hub\",\n    \"units_sold_last_month\": 8000,\n    \"current_price\": 9.98,\n    \"original_price\": 15.99,\n    \"stock_status\": \"In Stock\",\n    \"max_quantity_available\": 30,\n    \"review_count\": 18381,\n    \"rating\": 4.6,\n    \"sales_rank\": {\n      \"overall_category\": \"#11 in Computers & Accessories\",\n      \"subcategory\": \"#2 in Laptop Docking Stations\"\n    },\n    \"performance_rating\": 9\n  },\n  {\n    \"product_name\": \"Amazon Product (Unnamed)\",\n    \"units_sold_last_month\": 7000,\n    \"current_price\": 25.78,\n    \"stock_status\": \"In Stock\",\n    \"review_count\": 847,\n    \"rating\": 4.7,\n    \"sales_rank\": {\n      \"overall_category\": \"#7 in Tablet Chargers & Adapters\"\n    },\n    \"performance_rating\": 8.5\n  },\n  {\n    \"product_name\": \"UGREEN Power Bank 25,000mAh 145W Laptop Portable Charger\",\n    \"seller\": \"UGREEN GROUP LIMITED\",\n    \"units_sold_last_month\": 2000,\n    \"current_price\": 69.99,\n    \"original_price\": 99.99,\n    \"discount_percent\": 30,\n    \"stock_status\": \"In Stock\",\n    \"review_count\": 3657,\n    \"rating\": 4.4,\n    \"sales_rank\": {\n      \"overall_category\": \"#1,198 in Cell Phones & Accessories\",\n      \"subcategory\": \"#105 in Cell Phone Portable Power Banks\"\n    },\n    \"performance_rating\": 8\n  }\n]\n"
      },
      "typeVersion": 1.2
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "9c19383b-cabd-4530-8c1b-19eec6c6fb4a",
  "connections": {
    "a4117e05-67bc-42be-ba31-4b75be46ef9f": {
      "ai_languageModel": [
        [
          {
            "node": "a9a77a78-e60c-4329-ba4a-697c806bbf5c",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "312c6667-4ee1-4a44-85a5-99e612928451": {
      "ai_languageModel": [
        [
          {
            "node": "14b5ab60-1fac-4728-8ab3-b52f3ef476cd",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "a238a9f8-74ac-4a40-96fb-20c60f9b9dd9": {
      "ai_outputParser": [
        [
          {
            "node": "14b5ab60-1fac-4728-8ab3-b52f3ef476cd",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "14b5ab60-1fac-4728-8ab3-b52f3ef476cd": {
      "ai_outputParser": [
        [
          {
            "node": "a9a77a78-e60c-4329-ba4a-697c806bbf5c",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "353646b6-e2cb-42fd-aa8d-9d3c1693ef25": {
      "ai_tool": [
        [
          {
            "node": "a9a77a78-e60c-4329-ba4a-697c806bbf5c",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "a9a77a78-e60c-4329-ba4a-697c806bbf5c": {
      "main": [
        [
          {
            "node": "8ef0d68c-c9f6-4fda-8421-318da2875715",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "99c92ba4-9af0-4808-8f5a-5729ab7c922b": {
      "main": [
        [
          {
            "node": "a9a77a78-e60c-4329-ba4a-697c806bbf5c",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "1ab29609-739c-4f42-b398-d40e275d2531": {
      "main": [
        [
          {
            "node": "99c92ba4-9af0-4808-8f5a-5729ab7c922b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
자주 묻는 질문

이 워크플로우를 어떻게 사용하나요?

위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.

이 워크플로우는 어떤 시나리오에 적합한가요?

중급 - 시장 조사, AI 요약

유료인가요?

이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.

워크플로우 정보
난이도
중급
노드 수15
카테고리2
노드 유형8
난이도 설명

일정 경험을 가진 사용자를 위한 6-15개 노드의 중간 복잡도 워크플로우

저자
Yaron Been

Yaron Been

@yaron-nofluff

Building AI Agents and Automations | Growth Marketer | Entrepreneur | Book Author & Podcast Host If you need any help with Automations, feel free to reach out via linkedin: https://www.linkedin.com/in/yaronbeen/ And check out my Youtube channel: https://www.youtube.com/@YaronBeen/videos

외부 링크
n8n.io에서 보기

이 워크플로우 공유

카테고리

카테고리: 34