탄소 배출 추적기
고급
이것은Document Extraction, AI Summarization분야의자동화 워크플로우로, 16개의 노드를 포함합니다.주로 Code, GoogleDrive, ScheduleTrigger, ScrapegraphAi 등의 노드를 사용하며. ScrapeGraphAI를 사용하여 Google 클라우드 스토리지에서 ESG 보고서의 탄소 발자국 추적기를 분석합니다.
사전 요구사항
- •Google Drive API 인증 정보
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
"id": "CarbonFootprintTracker2025",
"meta": {
"instanceId": "carbon-tracker-sustainability-workflow-n8n",
"templateCredsSetupCompleted": false
},
"name": "Carbon Footprint Tracker",
"tags": [
"sustainability",
"esg",
"carbon-footprint",
"environmental",
"reporting"
],
"nodes": [
{
"id": "a1b2c3d4-e5f6-7890-abcd-ef1234567890",
"name": "스케줄 트리거",
"type": "n8n-nodes-base.scheduleTrigger",
"position": [
300,
800
],
"parameters": {
"rule": {
"interval": [
{
"field": "cronExpression",
"expression": "0 8 * * *"
}
]
}
},
"typeVersion": 1.2
},
{
"id": "b2c3d4e5-f6g7-8901-bcde-f23456789012",
"name": "에너지 데이터 스크래퍼",
"type": "n8n-nodes-scrapegraphai.scrapegraphAi",
"position": [
600,
700
],
"parameters": {
"userPrompt": "Extract energy consumption data and carbon emission factors. Use this schema: { \"energy_type\": \"electricity\", \"consumption_value\": \"1000\", \"unit\": \"kWh\", \"carbon_factor\": \"0.92\", \"emission_unit\": \"lbs CO2/kWh\", \"source\": \"EPA\", \"last_updated\": \"2024-01-15\" }",
"websiteUrl": "https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator"
},
"credentials": {
"scrapegraphAIApi": {
"id": "",
"name": ""
}
},
"typeVersion": 1
},
{
"id": "c3d4e5f6-g7h8-9012-cdef-345678901234",
"name": "교통 데이터 스크래퍼",
"type": "n8n-nodes-scrapegraphai.scrapegraphAi",
"position": [
600,
900
],
"parameters": {
"userPrompt": "Extract transportation emission factors and fuel efficiency data. Use this schema: { \"vehicle_type\": \"passenger_car\", \"fuel_type\": \"gasoline\", \"mpg\": \"25.4\", \"co2_per_gallon\": \"19.6\", \"co2_per_mile\": \"0.77\", \"unit\": \"lbs CO2\", \"source\": \"EPA\", \"category\": \"transport\" }",
"websiteUrl": "https://www.fueleconomy.gov/feg/co2.jsp"
},
"credentials": {
"scrapegraphAIApi": {
"id": "",
"name": ""
}
},
"typeVersion": 1
},
{
"id": "d4e5f6g7-h8i9-0123-defg-456789012345",
"name": "발자국 계산기",
"type": "n8n-nodes-base.code",
"position": [
1000,
800
],
"parameters": {
"jsCode": "// Carbon Footprint Calculator\nconst energyData = $input.item(0).json;\nconst transportData = $input.item(1).json;\n\n// Sample organizational data (in real scenario, this would come from your systems)\nconst organizationData = {\n electricity_consumption: 50000, // kWh/month\n natural_gas: 2000, // therms/month\n fleet_miles: 15000, // miles/month\n employee_commute: 25000, // miles/month\n air_travel: 50000, // miles/month\n employees: 100\n};\n\nfunction calculateCarbonFootprint(energyFactors, transportFactors, orgData) {\n const calculations = {\n scope1: {\n natural_gas: orgData.natural_gas * 11.7, // lbs CO2 per therm\n fleet_fuel: (orgData.fleet_miles / 25.4) * 19.6 // assuming 25.4 mpg\n },\n scope2: {\n electricity: orgData.electricity_consumption * 0.92 // lbs CO2 per kWh\n },\n scope3: {\n employee_commute: orgData.employee_commute * 0.77, // lbs CO2 per mile\n air_travel: orgData.air_travel * 0.53, // lbs CO2 per mile\n supply_chain: orgData.electricity_consumption * 0.1 // estimated\n }\n };\n\n const totalScope1 = Object.values(calculations.scope1).reduce((a, b) => a + b, 0);\n const totalScope2 = Object.values(calculations.scope2).reduce((a, b) => a + b, 0);\n const totalScope3 = Object.values(calculations.scope3).reduce((a, b) => a + b, 0);\n \n const totalEmissions = totalScope1 + totalScope2 + totalScope3;\n const emissionsPerEmployee = totalEmissions / orgData.employees;\n \n return {\n timestamp: new Date().toISOString(),\n total_emissions_lbs: Math.round(totalEmissions),\n total_emissions_tons: Math.round(totalEmissions / 2000 * 100) / 100,\n emissions_per_employee: Math.round(emissionsPerEmployee * 100) / 100,\n scope1_total: Math.round(totalScope1),\n scope2_total: Math.round(totalScope2),\n scope3_total: Math.round(totalScope3),\n breakdown: calculations,\n baseline_data: orgData\n };\n}\n\nconst footprintResults = calculateCarbonFootprint(\n energyData.result || energyData,\n transportData.result || transportData,\n organizationData\n);\n\nreturn [{ json: footprintResults }];"
},
"typeVersion": 2
},
{
"id": "e5f6g7h8-i9j0-1234-efgh-567890123456",
"name": "감축 기회 탐색기",
"type": "n8n-nodes-base.code",
"position": [
1400,
800
],
"parameters": {
"jsCode": "// Reduction Opportunity Finder\nconst footprintData = $input.first().json;\n\nfunction findReductionOpportunities(data) {\n const opportunities = [];\n const currentEmissions = data.total_emissions_tons;\n \n // Energy efficiency opportunities\n if (data.scope2_total > data.scope1_total * 0.5) {\n opportunities.push({\n category: 'Energy Efficiency',\n opportunity: 'LED lighting upgrade',\n potential_reduction_tons: Math.round(currentEmissions * 0.08 * 100) / 100,\n investment_required: '$25,000',\n payback_period: '2.5 years',\n priority: 'High',\n implementation_effort: 'Medium'\n });\n \n opportunities.push({\n category: 'Renewable Energy',\n opportunity: 'Solar panel installation',\n potential_reduction_tons: Math.round(currentEmissions * 0.25 * 100) / 100,\n investment_required: '$150,000',\n payback_period: '7 years',\n priority: 'High',\n implementation_effort: 'High'\n });\n }\n \n // Transportation opportunities\n if (data.breakdown.scope3.employee_commute > 5000) {\n opportunities.push({\n category: 'Transportation',\n opportunity: 'Remote work policy (3 days/week)',\n potential_reduction_tons: Math.round(currentEmissions * 0.12 * 100) / 100,\n investment_required: '$10,000',\n payback_period: '6 months',\n priority: 'High',\n implementation_effort: 'Low'\n });\n \n opportunities.push({\n category: 'Transportation',\n opportunity: 'Electric vehicle fleet transition',\n potential_reduction_tons: Math.round(currentEmissions * 0.15 * 100) / 100,\n investment_required: '$200,000',\n payback_period: '5 years',\n priority: 'Medium',\n implementation_effort: 'High'\n });\n }\n \n // Office efficiency\n opportunities.push({\n category: 'Office Operations',\n opportunity: 'Smart HVAC system',\n potential_reduction_tons: Math.round(currentEmissions * 0.06 * 100) / 100,\n investment_required: '$40,000',\n payback_period: '4 years',\n priority: 'Medium',\n implementation_effort: 'Medium'\n });\n \n const totalPotentialReduction = opportunities.reduce(\n (sum, opp) => sum + opp.potential_reduction_tons, 0\n );\n \n return {\n current_footprint: data,\n opportunities: opportunities,\n total_potential_reduction_tons: Math.round(totalPotentialReduction * 100) / 100,\n potential_reduction_percentage: Math.round((totalPotentialReduction / currentEmissions) * 100),\n analysis_date: new Date().toISOString()\n };\n}\n\nconst reductionAnalysis = findReductionOpportunities(footprintData);\n\nreturn [{ json: reductionAnalysis }];"
},
"typeVersion": 2
},
{
"id": "f6g7h8i9-j0k1-2345-fghi-678901234567",
"name": "지속가능성 대시보드",
"type": "n8n-nodes-base.code",
"position": [
1800,
800
],
"parameters": {
"jsCode": "// Sustainability Dashboard Data Formatter\nconst analysisData = $input.first().json;\n\nfunction createDashboardData(data) {\n const footprint = data.current_footprint;\n const opportunities = data.opportunities;\n \n // KPI Cards Data\n const kpis = {\n total_emissions: {\n value: footprint.total_emissions_tons,\n unit: 'tons CO2e',\n trend: '+5.2%', // This would be calculated from historical data\n status: footprint.total_emissions_tons > 100 ? 'warning' : 'good'\n },\n emissions_per_employee: {\n value: footprint.emissions_per_employee,\n unit: 'lbs CO2e/employee',\n trend: '+2.1%',\n status: 'improving'\n },\n reduction_potential: {\n value: data.potential_reduction_percentage,\n unit: '%',\n trend: 'new',\n status: 'opportunity'\n },\n cost_savings_potential: {\n value: Math.round(data.total_potential_reduction_tons * 50), // $50 per ton estimate\n unit: '$/year',\n trend: 'projected',\n status: 'positive'\n }\n };\n \n // Scope Breakdown for Charts\n const scopeBreakdown = {\n labels: ['Scope 1 (Direct)', 'Scope 2 (Electricity)', 'Scope 3 (Indirect)'],\n data: [footprint.scope1_total, footprint.scope2_total, footprint.scope3_total],\n colors: ['#FF6B6B', '#4ECDC4', '#45B7D1']\n };\n \n // Monthly Trend (simulated - would be from historical data)\n const monthlyTrend = {\n labels: ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'],\n emissions: [85, 78, 92, 88, 95, footprint.total_emissions_tons],\n target: [80, 80, 80, 80, 80, 80]\n };\n \n // Top Opportunities for Action Items\n const topOpportunities = opportunities\n .sort((a, b) => b.potential_reduction_tons - a.potential_reduction_tons)\n .slice(0, 5)\n .map(opp => ({\n ...opp,\n impact_score: Math.round((opp.potential_reduction_tons / data.total_potential_reduction_tons) * 100)\n }));\n \n return {\n dashboard_data: {\n kpis: kpis,\n scope_breakdown: scopeBreakdown,\n monthly_trend: monthlyTrend,\n top_opportunities: topOpportunities,\n last_updated: new Date().toISOString(),\n next_update: new Date(Date.now() + 24*60*60*1000).toISOString()\n },\n raw_analysis: data\n };\n}\n\nconst dashboardData = createDashboardData(analysisData);\n\nreturn [{ json: dashboardData }];"
},
"typeVersion": 2
},
{
"id": "g7h8i9j0-k1l2-3456-ghij-789012345678",
"name": "ESG 보고서 생성기",
"type": "n8n-nodes-base.code",
"position": [
2200,
800
],
"parameters": {
"jsCode": "// ESG Report Generator\nconst dashboardData = $input.first().json;\nconst data = dashboardData.raw_analysis;\nconst kpis = dashboardData.dashboard_data.kpis;\n\nfunction generateESGReport(analysisData, kpiData) {\n const reportDate = new Date().toLocaleDateString('en-US', {\n year: 'numeric',\n month: 'long',\n day: 'numeric'\n });\n \n const executiveSummary = `\n**EXECUTIVE SUMMARY**\n\nOur organization's current carbon footprint stands at ${analysisData.current_footprint.total_emissions_tons} tons CO2e, with emissions per employee at ${analysisData.current_footprint.emissions_per_employee} lbs CO2e. \n\nWe have identified ${analysisData.opportunities.length} key reduction opportunities that could decrease our emissions by ${analysisData.potential_reduction_percentage}% (${analysisData.total_potential_reduction_tons} tons CO2e annually).\n\n**KEY FINDINGS:**\n• Scope 2 emissions (electricity) represent ${Math.round((analysisData.current_footprint.scope2_total / analysisData.current_footprint.total_emissions_lbs) * 100)}% of total emissions\n• Transportation accounts for ${Math.round(((analysisData.current_footprint.breakdown.scope3.employee_commute + analysisData.current_footprint.breakdown.scope1.fleet_fuel) / analysisData.current_footprint.total_emissions_lbs) * 100)}% of our footprint\n• High-impact, low-cost opportunities exist in remote work policies and energy efficiency\n `;\n \n const emissionsBreakdown = `\n**EMISSIONS BREAKDOWN**\n\n**Scope 1 (Direct Emissions): ${Math.round(analysisData.current_footprint.scope1_total/2000*100)/100} tons CO2e**\n• Natural Gas: ${Math.round(analysisData.current_footprint.breakdown.scope1.natural_gas)} lbs CO2e\n• Fleet Vehicles: ${Math.round(analysisData.current_footprint.breakdown.scope1.fleet_fuel)} lbs CO2e\n\n**Scope 2 (Indirect - Electricity): ${Math.round(analysisData.current_footprint.scope2_total/2000*100)/100} tons CO2e**\n• Purchased Electricity: ${Math.round(analysisData.current_footprint.breakdown.scope2.electricity)} lbs CO2e\n\n**Scope 3 (Other Indirect): ${Math.round(analysisData.current_footprint.scope3_total/2000*100)/100} tons CO2e**\n• Employee Commuting: ${Math.round(analysisData.current_footprint.breakdown.scope3.employee_commute)} lbs CO2e\n• Business Travel: ${Math.round(analysisData.current_footprint.breakdown.scope3.air_travel)} lbs CO2e\n• Supply Chain: ${Math.round(analysisData.current_footprint.breakdown.scope3.supply_chain)} lbs CO2e\n `;\n \n const opportunitiesSection = analysisData.opportunities.map(opp => \n `• **${opp.opportunity}** (${opp.category})\\n Reduction: ${opp.potential_reduction_tons} tons CO2e | Investment: ${opp.investment_required} | Priority: ${opp.priority}`\n ).join('\\n\\n');\n \n const recommendations = `\n**STRATEGIC RECOMMENDATIONS**\n\n**Immediate Actions (0-6 months):**\n1. Implement remote work policy (3 days/week) - High impact, low cost\n2. Upgrade to LED lighting across all facilities\n3. Establish employee sustainability awareness program\n\n**Medium-term Goals (6-18 months):**\n1. Install smart HVAC systems with automated controls\n2. Conduct comprehensive energy audit of all facilities\n3. Develop supplier sustainability scorecard\n\n**Long-term Commitments (1-3 years):**\n1. Transition to renewable energy sources (solar installation)\n2. Electrify vehicle fleet where feasible\n3. Achieve carbon neutrality through verified offsets\n\n**Financial Impact:**\nTotal estimated annual savings from all initiatives: $${Math.round(analysisData.total_potential_reduction_tons * 50).toLocaleString()}\nPayback period for major investments: 3-7 years\n `;\n \n const fullReport = `\n# 🌱 CARBON FOOTPRINT & ESG REPORT\n**Generated: ${reportDate}**\n**Reporting Period: Current Month**\n**Organization: [Company Name]**\n\n${executiveSummary}\n\n${emissionsBreakdown}\n\n**REDUCTION OPPORTUNITIES**\n\n${opportunitiesSection}\n\n${recommendations}\n\n**COMPLIANCE & BENCHMARKING**\n• Current emissions intensity: ${analysisData.current_footprint.emissions_per_employee} lbs CO2e per employee\n• Industry benchmark: 1,200-1,800 lbs CO2e per employee (service sector)\n• Science-based target alignment: Reduction pathway defined for 1.5°C scenario\n\n**NEXT STEPS**\n1. Present findings to executive leadership\n2. Allocate budget for priority initiatives\n3. Establish monthly monitoring and reporting cadence\n4. Engage employees in sustainability initiatives\n\n---\n*This report was automatically generated using real-time data collection and analysis. For questions or detailed implementation planning, contact the Sustainability Team.*\n `;\n \n return {\n report_text: fullReport,\n report_date: reportDate,\n report_type: 'Carbon Footprint & ESG Analysis',\n key_metrics: {\n total_emissions: analysisData.current_footprint.total_emissions_tons,\n reduction_potential: analysisData.potential_reduction_percentage,\n cost_savings_potential: Math.round(analysisData.total_potential_reduction_tons * 50),\n opportunities_count: analysisData.opportunities.length\n },\n file_name: `Carbon_Footprint_Report_${new Date().toISOString().split('T')[0]}.md`\n };\n}\n\nconst esgReport = generateESGReport(data, kpis);\n\nreturn [{ json: esgReport }];"
},
"typeVersion": 2
},
{
"id": "h8i9j0k1-l2m3-4567-hijk-890123456789",
"name": "보고서 폴더 생성",
"type": "n8n-nodes-base.googleDrive",
"position": [
2600,
700
],
"parameters": {
"name": "ESG_Reports",
"options": {},
"resource": "folder",
"operation": "create"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "",
"name": ""
}
},
"typeVersion": 3
},
{
"id": "i9j0k1l2-m3n4-5678-ijkl-901234567890",
"name": "드라이브에 보고서 저장",
"type": "n8n-nodes-base.googleDrive",
"position": [
2600,
900
],
"parameters": {
"name": "={{ $json.file_name }}",
"driveId": {
"__rl": true,
"mode": "id",
"value": "={{ $node['Create Reports Folder'].json.id }}"
},
"options": {
"parents": [
"={{ $node['Create Reports Folder'].json.id }}"
]
},
"operation": "upload",
"binaryData": false,
"fileContent": "={{ $json.report_text }}"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "",
"name": ""
}
},
"typeVersion": 3
},
{
"id": "sticky1-abcd-efgh-ijkl-mnop12345678",
"name": "트리거 정보",
"type": "n8n-nodes-base.stickyNote",
"position": [
100,
450
],
"parameters": {
"color": 5,
"width": 520,
"height": 580,
"content": "# Step 1: Daily Trigger ⏰\n\nThis trigger runs the carbon footprint analysis daily at 8:00 AM.\n\n## Configuration Options\n- **Schedule**: Daily at 8:00 AM (customizable)\n- **Alternative**: Manual trigger for on-demand analysis\n- **Timezone**: Adjustable based on your location\n\n## Purpose\n- Ensures consistent daily monitoring\n- Captures real-time data changes\n- Maintains historical tracking"
},
"typeVersion": 1
},
{
"id": "sticky2-bcde-fghi-jklm-nopq23456789",
"name": "데이터 수집 정보",
"type": "n8n-nodes-base.stickyNote",
"position": [
400,
450
],
"parameters": {
"color": 4,
"width": 520,
"height": 580,
"content": "# Step 2: Data Collection 🌐\n\n**Energy Data Scraper** and **Transport Data Scraper** work in parallel to gather emission factors.\n\n## What it does\n- Scrapes EPA energy consumption data\n- Collects transportation emission factors\n- Gathers fuel efficiency metrics\n- Updates carbon conversion factors\n\n## Data Sources\n- EPA Greenhouse Gas Calculator\n- FuelEconomy.gov\n- Energy.gov databases"
},
"typeVersion": 1
},
{
"id": "sticky3-cdef-ghij-klmn-opqr34567890",
"name": "계산기 정보",
"type": "n8n-nodes-base.stickyNote",
"position": [
800,
450
],
"parameters": {
"color": 3,
"width": 520,
"height": 580,
"content": "# Step 3: Footprint Calculator 🧮\n\nCalculates comprehensive carbon footprint across all scopes.\n\n## Calculations Include\n- **Scope 1**: Direct emissions (gas, fleet)\n- **Scope 2**: Electricity consumption\n- **Scope 3**: Commuting, travel, supply chain\n- **Per-employee metrics**\n- **Monthly comparisons**\n\n## Output\n- Total emissions in tons CO2e\n- Detailed breakdown by source\n- Baseline data for tracking"
},
"typeVersion": 1
},
{
"id": "sticky4-defg-hijk-lmno-pqrs45678901",
"name": "기회 정보",
"type": "n8n-nodes-base.stickyNote",
"position": [
1200,
450
],
"parameters": {
"color": 6,
"width": 520,
"height": 580,
"content": "# Step 4: Opportunity Analysis 🎯\n\nIdentifies specific reduction opportunities with ROI analysis.\n\n## Analysis Areas\n- **Energy Efficiency**: LED, HVAC, smart systems\n- **Renewable Energy**: Solar, wind options\n- **Transportation**: Remote work, EV fleet\n- **Operations**: Process improvements\n\n## For Each Opportunity\n- Potential CO2 reduction\n- Investment required\n- Payback period\n- Implementation difficulty"
},
"typeVersion": 1
},
{
"id": "sticky5-efgh-ijkl-mnop-qrst56789012",
"name": "대시보드 정보",
"type": "n8n-nodes-base.stickyNote",
"position": [
1600,
450
],
"parameters": {
"color": 2,
"width": 520,
"height": 580,
"content": "# Step 5: Dashboard Preparation 📊\n\nFormats data for sustainability dashboard visualization.\n\n## Dashboard Elements\n- **KPI Cards**: Key metrics with trends\n- **Scope Breakdown**: Pie charts by emission source\n- **Monthly Trends**: Historical progress tracking\n- **Action Items**: Priority opportunities\n\n## Data Outputs\n- Chart-ready JSON data\n- KPI summaries\n- Status indicators\n- Performance trends"
},
"typeVersion": 1
},
{
"id": "sticky6-fghi-jklm-nopq-rstu67890123",
"name": "ESG 보고서 정보",
"type": "n8n-nodes-base.stickyNote",
"position": [
2000,
450
],
"parameters": {
"color": 1,
"width": 520,
"height": 580,
"content": "# Step 6: ESG Report Generation 📋\n\nCreates comprehensive ESG compliance report.\n\n## Report Sections\n- **Executive Summary**: Key findings\n- **Emissions Breakdown**: Detailed analysis\n- **Reduction Opportunities**: Prioritized list\n- **Strategic Recommendations**: Action plan\n- **Financial Impact**: Cost-benefit analysis\n\n## Compliance Features\n- Science-based targets alignment\n- Industry benchmarking\n- Regulatory compliance tracking"
},
"typeVersion": 1
},
{
"id": "sticky7-ghij-klmn-opqr-stuv78901234",
"name": "저장 정보",
"type": "n8n-nodes-base.stickyNote",
"position": [
2400,
450
],
"parameters": {
"color": 7,
"width": 520,
"height": 580,
"content": "# Step 7: Report Storage 💾\n\nSaves generated reports to Google Drive for team access.\n\n## Storage Features\n- **Organized Folders**: ESG_Reports directory\n- **Version Control**: Date-stamped files\n- **Team Access**: Shared drive integration\n- **Format**: Markdown for easy reading\n\n## File Management\n- Automatic folder creation\n- Standardized naming convention\n- Historical report retention\n- Easy sharing and collaboration"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "carbon-footprint-v1-2025-001",
"connections": {
"a1b2c3d4-e5f6-7890-abcd-ef1234567890": {
"main": [
[
{
"node": "b2c3d4e5-f6g7-8901-bcde-f23456789012",
"type": "main",
"index": 0
},
{
"node": "c3d4e5f6-g7h8-9012-cdef-345678901234",
"type": "main",
"index": 0
}
]
]
},
"b2c3d4e5-f6g7-8901-bcde-f23456789012": {
"main": [
[
{
"node": "d4e5f6g7-h8i9-0123-defg-456789012345",
"type": "main",
"index": 0
}
]
]
},
"g7h8i9j0-k1l2-3456-ghij-789012345678": {
"main": [
[
{
"node": "h8i9j0k1-l2m3-4567-hijk-890123456789",
"type": "main",
"index": 0
},
{
"node": "i9j0k1l2-m3n4-5678-ijkl-901234567890",
"type": "main",
"index": 0
}
]
]
},
"d4e5f6g7-h8i9-0123-defg-456789012345": {
"main": [
[
{
"node": "e5f6g7h8-i9j0-1234-efgh-567890123456",
"type": "main",
"index": 0
}
]
]
},
"i9j0k1l2-m3n4-5678-ijkl-901234567890": {
"main": [
[]
]
},
"h8i9j0k1-l2m3-4567-hijk-890123456789": {
"main": [
[
{
"node": "i9j0k1l2-m3n4-5678-ijkl-901234567890",
"type": "main",
"index": 0
}
]
]
},
"c3d4e5f6-g7h8-9012-cdef-345678901234": {
"main": [
[
{
"node": "d4e5f6g7-h8i9-0123-defg-456789012345",
"type": "main",
"index": 1
}
]
]
},
"f6g7h8i9-j0k1-2345-fghi-678901234567": {
"main": [
[
{
"node": "g7h8i9j0-k1l2-3456-ghij-789012345678",
"type": "main",
"index": 0
}
]
]
},
"e5f6g7h8-i9j0-1234-efgh-567890123456": {
"main": [
[
{
"node": "f6g7h8i9-j0k1-2345-fghi-678901234567",
"type": "main",
"index": 0
}
]
]
}
}
}자주 묻는 질문
이 워크플로우를 어떻게 사용하나요?
위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.
이 워크플로우는 어떤 시나리오에 적합한가요?
고급 - 문서 추출, AI 요약
유료인가요?
이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.
관련 워크플로우 추천
나의 작업 흐름 2
ScrapeGraphAI를 활용한 AI 기반 콘텐츠 격차 분석 및 전략적 계획
Code
Google Sheets
Schedule Trigger
+
Code
Google Sheets
Schedule Trigger
18 노드vinci-king-01
시장 조사
부동산 유지 관리 비용 분석
ScrapeGraphAI를 사용하여 유지보수 비용 분석 및 예산 계획 수립
Code
Schedule Trigger
Scrapegraph Ai
+
Code
Schedule Trigger
Scrapegraph Ai
12 노드vinci-king-01
시장 조사
부동산 시장 심리 분석
ScrapeGraphAI 및 Telegram을 사용하여 부동산 시장 심리 분석
Code
Telegram
Schedule Trigger
+
Code
Telegram
Schedule Trigger
15 노드vinci-king-01
시장 조사
부동산
ScrapeGraphAI를 사용하여 Zillow 부동산 목록을 Telegram으로 자동 전송
Code
Telegram
Schedule Trigger
+
Code
Telegram
Schedule Trigger
8 노드vinci-king-01
시장 조사
ScrapegraphAI를 사용한 뉴스 기사 자동 스크래핑 및 Google Sheets 저장
ScrapegraphAI를 사용한 뉴스 기사 자동 스크래핑 및 Google Sheets 저장
Code
Google Sheets
Schedule Trigger
+
Code
Google Sheets
Schedule Trigger
8 노드vinci-king-01
시장 조사
내 워크플로 2
ScrapeGraphAI 및 이메일 알림을 사용한 규제 준수 모니터링 자동화
Code
Email Send
Schedule Trigger
+
Code
Email Send
Schedule Trigger
14 노드vinci-king-01
기타