fire/v-sekai.mediapipe-labeler - 이미지 생성기
중급
이것은Content Creation, AI Summarization분야의자동화 워크플로우로, 15개의 노드를 포함합니다.주로 If, Set, Code, Wait, HttpRequest 등의 노드를 사용하며. V-Sekai와 Replicate를 사용하여 이미지에서 MediaPipe 혼합 모양 태그 생성
사전 요구사항
- •대상 API의 인증 정보가 필요할 수 있음
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
"meta": {
"instanceId": "e00f79fa-f64f-48e0-aae2-37081dd5270e",
"model_name": "v-sekai.mediapipe-labeler",
"model_type": "image",
"version_id": "f6cda62f5bdf02558ef9f9d23512a296db9927b2b93b6c57295f3e9d6ae696fa",
"model_owner": "fire",
"generated_at": "2025-08-01T14:50:46.345272"
},
"name": "fire/v-sekai.mediapipe-labeler - Image Generator",
"nodes": [
{
"id": "c978c865-1aa7-4ac6-8455-143ec1774522",
"name": "수동 트리거",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-896,
-176
],
"parameters": {},
"typeVersion": 1
},
{
"id": "73d38bb8-80f8-411c-b658-f54147773094",
"name": "Set API Token",
"type": "n8n-nodes-base.set",
"position": [
-608,
-80
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "api_token",
"name": "api_token",
"type": "string",
"value": "YOUR_REPLICATE_API_TOKEN"
}
]
}
},
"typeVersion": 3.3
},
{
"id": "a1f0c0e2-249c-4546-9af3-dba177060dec",
"name": "이미지 매개변수 설정",
"type": "n8n-nodes-base.set",
"position": [
-288,
-128
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "api_token",
"name": "api_token",
"type": "string",
"value": "={{ $('Set API Token').item.json.api_token }}"
},
{
"id": "test_mode",
"name": "test_mode",
"type": "boolean",
"value": false
},
{
"id": "max_people",
"name": "max_people",
"type": "number",
"value": 100
},
{
"id": "media_path",
"name": "media_path",
"type": "string",
"value": "https://picsum.photos/512/512"
},
{
"id": "export_train",
"name": "export_train",
"type": "boolean",
"value": true
},
{
"id": "aligned_media",
"name": "aligned_media",
"type": "string",
"value": "https://picsum.photos/512/512"
},
{
"id": "frame_sample_rate",
"name": "frame_sample_rate",
"type": "number",
"value": 1
}
]
}
},
"typeVersion": 3.3
},
{
"id": "00a77e3f-63c1-4730-8544-6248e389defa",
"name": "이미지 예측 생성",
"type": "n8n-nodes-base.httpRequest",
"position": [
-64,
-128
],
"parameters": {
"url": "https://api.replicate.com/v1/predictions",
"method": "POST",
"options": {
"response": {
"response": {
"neverError": true,
"responseFormat": "json"
}
}
},
"jsonBody": "={\n \"version\": \"fire/v-sekai.mediapipe-labeler:f6cda62f5bdf02558ef9f9d23512a296db9927b2b93b6c57295f3e9d6ae696fa\",\n \"input\": {\n \"test_mode\": {{ $json.test_mode }},\n \"max_people\": {{ $json.max_people }},\n \"media_path\": \"{{ $json.media_path }}\",\n \"export_train\": {{ $json.export_train }},\n \"aligned_media\": \"{{ $json.aligned_media }}\",\n \"frame_sample_rate\": {{ $json.frame_sample_rate }}\n }\n}",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"headerParameters": {
"parameters": [
{
"name": "Authorization",
"value": "=Bearer {{ $json.api_token }}"
},
{
"name": "Prefer",
"value": "wait"
}
]
}
},
"typeVersion": 4.1
},
{
"id": "7fc9899b-2ff1-46b8-a7a8-1b016d5ad5ee",
"name": "5초 대기",
"type": "n8n-nodes-base.wait",
"position": [
160,
-128
],
"webhookId": "d2c4ca16-0eb2-45b4-8a2d-eec2f99df89c",
"parameters": {
"unit": "seconds",
"amount": 5
},
"typeVersion": 1
},
{
"id": "54d067e2-633e-4ec2-a83f-fd5dbb47a011",
"name": "상태 확인",
"type": "n8n-nodes-base.httpRequest",
"position": [
384,
-128
],
"parameters": {
"url": "=https://api.replicate.com/v1/predictions/{{ $('Create Image Prediction').item.json.id }}",
"options": {
"response": {
"response": {
"neverError": true,
"responseFormat": "json"
}
}
},
"sendHeaders": true,
"headerParameters": {
"parameters": [
{
"name": "Authorization",
"value": "=Bearer {{ $('Set API Token').item.json.api_token }}"
}
]
}
},
"typeVersion": 4.1
},
{
"id": "97dd6913-5352-4dbf-af7e-203f165eb52f",
"name": "완료 여부?",
"type": "n8n-nodes-base.if",
"position": [
528,
-240
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 1,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "loose"
},
"combinator": "and",
"conditions": [
{
"id": "c93d7ba1-0ef9-4087-aa10-389cb2a2c6bd",
"operator": {
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json.status }}",
"rightValue": "succeeded"
}
]
}
},
"typeVersion": 2
},
{
"id": "9a2dcfb9-a05a-49b7-8ac8-7f6526d195a0",
"name": "실패 여부?",
"type": "n8n-nodes-base.if",
"position": [
848,
-80
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 1,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "loose"
},
"combinator": "and",
"conditions": [
{
"id": "d1bfd044-3a07-4c18-b55f-72d192596139",
"operator": {
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json.status }}",
"rightValue": "failed"
}
]
}
},
"typeVersion": 2
},
{
"id": "82f97696-0367-4cea-b0af-cfa930c35086",
"name": "10초 대기",
"type": "n8n-nodes-base.wait",
"position": [
720,
128
],
"webhookId": "51a05aef-e220-406d-8c2c-e59c82c3e26e",
"parameters": {
"unit": "seconds",
"amount": 10
},
"typeVersion": 1
},
{
"id": "1228b6aa-51af-4556-bc41-c2ca46065ae9",
"name": "성공 응답",
"type": "n8n-nodes-base.set",
"position": [
832,
-320
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "success-response",
"name": "response",
"type": "object",
"value": "={{ { success: true, image_url: $json.output, prediction_id: $json.id, status: $json.status, message: 'Image generated successfully' } }}"
}
]
}
},
"typeVersion": 3.3
},
{
"id": "6920eb95-f2a8-4ff7-80ec-cc7d13c1ebc6",
"name": "오류 응답",
"type": "n8n-nodes-base.set",
"position": [
1344,
144
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "error-response",
"name": "response",
"type": "object",
"value": "={{ { success: false, error: $json.error || 'Image generation failed', prediction_id: $json.id, status: $json.status, message: 'Failed to generate image' } }}"
}
]
}
},
"typeVersion": 3.3
},
{
"id": "ee9329a3-b8ec-4848-8a99-a307c9889f02",
"name": "결과 표시",
"type": "n8n-nodes-base.set",
"position": [
1552,
-144
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "final-result",
"name": "final_result",
"type": "object",
"value": "={{ $json.response }}"
}
]
}
},
"typeVersion": 3.3
},
{
"id": "415c003f-5e20-4abb-8a29-638a3f98a337",
"name": "요청 로그",
"type": "n8n-nodes-base.code",
"position": [
160,
-320
],
"parameters": {
"jsCode": "// Log generation details for monitoring\nconst data = $input.all()[0].json;\n\nconsole.log('fire/v-sekai.mediapipe-labeler Request:', {\n timestamp: new Date().toISOString(),\n prediction_id: data.id,\n model_type: 'image'\n});\n\nreturn $input.all();"
},
"typeVersion": 2
},
{
"id": "07885145-e9e1-44d1-b5e5-367b98f89ab0",
"name": "스티키 노트9",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1536,
-304
],
"parameters": {
"color": 4,
"width": 580,
"height": 320,
"content": "=======================================\n V-SEKAI.MEDIAPIPE-LABELER GENERATOR\n=======================================\nFor any questions or support, please contact:\n Yaron@nofluff.online\n\nExplore more tips and tutorials here:\n - YouTube: https://www.youtube.com/@YaronBeen/videos\n - LinkedIn: https://www.linkedin.com/in/yaronbeen/\n======================================="
},
"typeVersion": 1
},
{
"id": "fb59c407-0e49-407f-9f91-71b614a0b870",
"name": "스티키 노트4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1536,
48
],
"parameters": {
"color": 4,
"width": 589,
"height": 1958,
"content": "## 🤖 **FIRE/V-SEKAI.MEDIAPIPE-LABELER - IMAGE GENERATION WORKFLOW**\n\n**🔥 Powered by Replicate API and n8n Automation**\n\n---\n\n### 📝 **Model Overview**\n\n- **Owner**: fire\n- **Model**: v-sekai.mediapipe-labeler\n- **Type**: Image Generation\n- **API Endpoint**: https://api.replicate.com/v1/predictions\n\n**🎯 What This Model Does:**\nMediapipe Blendshape Labeler - Predicts the blend shapes of an image.\n\n---\n\n### 📋 **Parameter Reference**\n\n**🔴 Required Parameters:** media_path\n**🔵 Optional Parameters:** test_mode, max_people, export_train, aligned_media, frame_sample_rate\n\n**📖 Detailed Parameter Guide:**\n- **test_mode** (boolean): Enable test mode for quick verification (Default: False)\n- **max_people** (integer): Maximum number of people to detect (1-100) (Default: 100)\n- **media_path** (string): Input image, video, or training zip file\n- **export_train** (boolean): Export training zip containing json annotations and frame pngs (Default: True)\n- **aligned_media** (string): Optional video that is aligned with the input video's annotations\n- **frame_sample_rate** (integer): Process every nth frame for video input (Default: 1)\n\n---\n\n### 🔧 **Workflow Components Explained**\n\n**🎯 Manual Trigger**\n- Starts the workflow execution\n- Click to begin image generation process\n\n**🔐 Set API Token** \n- Configures your Replicate API authentication\n- Replace 'YOUR_REPLICATE_API_TOKEN' with your actual token\n- Essential for accessing the fire/v-sekai.mediapipe-labeler model\n\n**⚙️ Set Image Parameters**\n- Configures all input parameters for the model\n- Includes both required and optional parameters\n- Pre-filled with sensible defaults for testing\n\n**🚀 Create Image Prediction**\n- Sends the generation request to Replicate API\n- Uses the image parameters you configured\n- Returns a prediction ID for status tracking\n\n**⏳ Wait & Status Checking Loop**\n- Waits 5 seconds then checks prediction status\n- Continues checking until completion or failure\n- Implements intelligent retry logic with 10-second delays\n\n**✅ Success/Error Handling**\n- Routes successful completions to success response\n- Handles failures gracefully with error details\n- Returns structured JSON response with URLs/errors\n\n**📊 Logging & Monitoring**\n- Logs all requests for debugging and monitoring\n- Tracks timestamps and prediction IDs\n- Helps identify issues during development\n\n---\n\n### 🌟 **Key Benefits**\n\n- **🎨 Instant Image Generation**: Transform ideas into images using state-of-the-art AI\n- **🔄 Automated Workflow**: Handles the complete generation pipeline automatically\n- **🛡️ Error Resilience**: Built-in retry logic and comprehensive error handling\n- **📈 Production Ready**: Includes logging, monitoring, and structured responses\n- **🔧 Customizable**: Easy to modify parameters and extend functionality\n- **⚡ Efficient Processing**: Optimized API calls with intelligent status checking\n\n---\n\n### 🚀 **Quick Start Instructions**\n\n1. **🔑 Get Your API Key**\n - Sign up at https://replicate.com\n - Navigate to your account settings\n - Copy your API token\n\n2. **🔧 Configure the Workflow**\n - Replace 'YOUR_REPLICATE_API_TOKEN' with your actual token\n - Adjust parameters in the 'Set Image Parameters' node\n - Customize the prompt or other inputs as needed\n\n3. **▶️ Execute the Workflow**\n - Click the 'Manual Trigger' to start\n - Monitor the execution in the n8n interface\n - Check logs for detailed execution information\n\n4. **📥 Get Your Results**\n - Successful generations return a URL to your image\n - Download or use the generated content as needed\n - Results are available immediately upon completion\n\n---\n\n### 🔍 **Troubleshooting Guide**\n\n**Common Issues:**\n- **Invalid API Token**: Ensure your Replicate token is valid and has sufficient credits\n- **Parameter Validation**: Check that required parameters match expected types\n- **Generation Timeout**: Some images take longer - monitor the logs\n- **Output Format**: Verify the model returns the expected output format\n\n**Best Practices:**\n- Test with default parameters first\n- Monitor your Replicate usage and billing\n- Keep API tokens secure and never commit them to code\n- Use appropriate parameter values for your use case\n\n---\n\n**🔗 Additional Resources:**\n- Model Documentation: https://replicate.com/fire/v-sekai.mediapipe-labeler\n- Replicate API Docs: https://replicate.com/docs\n- n8n Documentation: https://docs.n8n.io\n\n---"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"versionId": "1",
"connections": {
"7fc9899b-2ff1-46b8-a7a8-1b016d5ad5ee": {
"main": [
[
{
"node": "54d067e2-633e-4ec2-a83f-fd5dbb47a011",
"type": "main",
"index": 0
}
]
]
},
"82f97696-0367-4cea-b0af-cfa930c35086": {
"main": [
[
{
"node": "54d067e2-633e-4ec2-a83f-fd5dbb47a011",
"type": "main",
"index": 0
}
]
]
},
"9a2dcfb9-a05a-49b7-8ac8-7f6526d195a0": {
"main": [
[
{
"node": "6920eb95-f2a8-4ff7-80ec-cc7d13c1ebc6",
"type": "main",
"index": 0
}
],
[
{
"node": "82f97696-0367-4cea-b0af-cfa930c35086",
"type": "main",
"index": 0
}
]
]
},
"415c003f-5e20-4abb-8a29-638a3f98a337": {
"main": [
[
{
"node": "7fc9899b-2ff1-46b8-a7a8-1b016d5ad5ee",
"type": "main",
"index": 0
}
]
]
},
"54d067e2-633e-4ec2-a83f-fd5dbb47a011": {
"main": [
[
{
"node": "97dd6913-5352-4dbf-af7e-203f165eb52f",
"type": "main",
"index": 0
}
]
]
},
"97dd6913-5352-4dbf-af7e-203f165eb52f": {
"main": [
[
{
"node": "1228b6aa-51af-4556-bc41-c2ca46065ae9",
"type": "main",
"index": 0
}
],
[
{
"node": "9a2dcfb9-a05a-49b7-8ac8-7f6526d195a0",
"type": "main",
"index": 0
}
]
]
},
"73d38bb8-80f8-411c-b658-f54147773094": {
"main": [
[
{
"node": "a1f0c0e2-249c-4546-9af3-dba177060dec",
"type": "main",
"index": 0
}
]
]
},
"6920eb95-f2a8-4ff7-80ec-cc7d13c1ebc6": {
"main": [
[
{
"node": "ee9329a3-b8ec-4848-8a99-a307c9889f02",
"type": "main",
"index": 0
}
]
]
},
"c978c865-1aa7-4ac6-8455-143ec1774522": {
"main": [
[
{
"node": "73d38bb8-80f8-411c-b658-f54147773094",
"type": "main",
"index": 0
}
]
]
},
"1228b6aa-51af-4556-bc41-c2ca46065ae9": {
"main": [
[
{
"node": "ee9329a3-b8ec-4848-8a99-a307c9889f02",
"type": "main",
"index": 0
}
]
]
},
"a1f0c0e2-249c-4546-9af3-dba177060dec": {
"main": [
[
{
"node": "00a77e3f-63c1-4730-8544-6248e389defa",
"type": "main",
"index": 0
}
]
]
},
"00a77e3f-63c1-4730-8544-6248e389defa": {
"main": [
[
{
"node": "415c003f-5e20-4abb-8a29-638a3f98a337",
"type": "main",
"index": 0
}
]
]
}
}
}자주 묻는 질문
이 워크플로우를 어떻게 사용하나요?
위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.
이 워크플로우는 어떤 시나리오에 적합한가요?
중급 - 콘텐츠 제작, AI 요약
유료인가요?
이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.
관련 워크플로우 추천
Fire V Sekai.mediapipe 태거 이미지 생성기
Replicate API를 통한 Mediapipe Blendshape 태거를 사용한 이미지 분석
If
Set
Code
+
If
Set
Code
9 노드Yaron Been
콘텐츠 제작
ByteDance/Seedream-3 - 이미지 생성기
ByteDance Seedream 3: 텍스트에서 이미지 변환 템플릿
If
Set
Code
+
If
Set
Code
15 노드Yaron Been
콘텐츠 제작
Dessix Moss Ttsd 텍스트 생성기
Replicate Moss-TTSD를 사용하여 대화 스크립트를 자연스러운 음성으로 변환
If
Set
Code
+
If
Set
Code
9 노드Yaron Been
콘텐츠 제작
ibm-granite/granite-speech-3.3-8b - 텍스트 생성기
Replicate API를 사용하여 IBM Granite 3.3 8B 모델을 통해 음성을 텍스트로 변환합니다.
If
Set
Code
+
If
Set
Code
15 노드Yaron Been
콘텐츠 제작
moicarmonas/2ndmoises_generator - 다른 생성기
사용하여 2nd Moises 생성器및 Replicate로 텍스트 힌트에서 이미지를 생성합니다.
If
Set
Code
+
If
Set
Code
15 노드Yaron Been
콘텐츠 제작
moicarmonas/3rdmoises_generator_oldversion - 다른 생성기
사용하여 3rd Moises 생성器및 Replicate로 텍스트 힌트에서 이미지를 생성합니다.
If
Set
Code
+
If
Set
Code
15 노드Yaron Been
콘텐츠 제작
워크플로우 정보
난이도
중급
노드 수15
카테고리2
노드 유형7
저자
Yaron Been
@yaron-nofluffBuilding AI Agents and Automations | Growth Marketer | Entrepreneur | Book Author & Podcast Host If you need any help with Automations, feel free to reach out via linkedin: https://www.linkedin.com/in/yaronbeen/ And check out my Youtube channel: https://www.youtube.com/@YaronBeen/videos
외부 링크
n8n.io에서 보기 →
이 워크플로우 공유