8
n8n 한국어amn8n.com

AI 기반 LinkedIn 연락처 추천기

중급

이것은Lead Generation, Multimodal AI분야의자동화 워크플로우로, 10개의 노드를 포함합니다.주로 Set, Code, EmailSend, HttpRequest, EmailReadImap 등의 노드를 사용하며. AI 기반 LinkedIn 연락처 추천기

사전 요구사항
  • 대상 API의 인증 정보가 필요할 수 있음
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
  "id": "fnSWZ5XCdbq6snzS",
  "meta": {
    "instanceId": "dd69efaf8212c74ad206700d104739d3329588a6f3f8381a46a481f34c9cc281",
    "templateCredsSetupCompleted": true
  },
  "name": "AI-Powered LinkedIn Connection Recommender",
  "tags": [],
  "nodes": [
    {
      "id": "ef9e2f3b-c06a-484a-8903-2f37b35728f3",
      "name": "LinkedIn 프로필 검색",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -600,
        4.76293103448279
      ],
      "parameters": {
        "url": "https://serpapi.com/search.json",
        "options": {},
        "sendQuery": true,
        "authentication": "genericCredentialType",
        "genericAuthType": "httpBasicAuth",
        "queryParameters": {
          "parameters": [
            {
              "name": "engine",
              "value": "google"
            },
            {
              "name": "q",
              "value": "=site:linkedin.com/in \"{{ $json.Position }}\" \"{{ $json.Location }}\" {{ $json.Skills.split(',')[0] }}"
            },
            {
              "name": "api_key",
              "value": "="
            },
            {
              "name": "num",
              "value": "200"
            },
            {
              "name": "start",
              "value": "0"
            }
          ]
        }
      },
      "credentials": {
        "httpBasicAuth": {
          "id": "SS8MHWya3vb8KVFr",
          "name": "temporary cred"
        },
        "httpQueryAuth": {
          "id": "xA2e6hA40RZ8bzrI",
          "name": "Query Auth account - test"
        }
      },
      "typeVersion": 4
    },
    {
      "id": "34999f59-ae4b-4ef6-9603-bc5f6b2798d0",
      "name": "AI 프로필 분석",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        -160,
        4.76293103448279
      ],
      "parameters": {
        "text": "=You are a LinkedIn networking expert. Analyze the following user profile and potential connections to provide intelligent networking recommendations.\n\nUser Profile:\n- Name: {{ $json.userProfile.name }}\n- Position: {{ $json.userProfile.current_position }}\n- Industry: {{ $json.userProfile.industry }}\n- Location: {{ $json.userProfile.location }}\n- Skills: {{ $json.userProfile.skills }}\n- Interests: {{ $json.userProfile.interests }}\n- Target Roles: {{ $json.userProfile.target_roles }}\n- Preferred Companies: {{ $json.userProfile.company_types }}\n\nPotential Connections Found:\n{{ $json.foundProfiles.map(p => `- ${p.name}: ${p.headline}`).join('\\n') }}\n\nPlease provide a JSON response with the following structure:\n{\n  \"scored_profiles\": [\n    {\n      \"name\": \"Profile Name\",\n      \"score\": 8.5,\n      \"reasons\": [\"Similar role\", \"Same industry\", \"Skill overlap\"]\n    }\n  ],\n  \"top_connections\": [\n    // Top 10 recommended profiles with full details\n  ],\n  \"connection_strategies\": [\n    \"Personalized connection message suggestion for each top profile\"\n  ],\n  \"networking_insights\": \"Key insights about networking opportunities and industry trends\"\n}\n\nScore profiles from 1-10 based on:\n- Role alignment with user's target positions\n- Industry relevance\n- Skill complementarity\n- Networking value\n- Career growth potential\n\nFocus on quality connections that could provide mutual value.",
        "batching": {},
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "d8205e9b-e176-477c-a8e7-2f1eb94bc3cb",
      "name": "Ollama Model1",
      "type": "@n8n/n8n-nodes-langchain.lmOllama",
      "position": [
        -72,
        224.7629310344828
      ],
      "parameters": {
        "model": "llama3.2-16000:latest",
        "options": {
          "topP": 0.9,
          "temperature": 0.7
        }
      },
      "credentials": {
        "ollamaApi": {
          "id": "7td3WzXCW2wNhraP",
          "name": "Ollama - test"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "482f65e9-4075-4d60-8bc8-3c078f8c7acc",
      "name": "이메일 전송",
      "type": "n8n-nodes-base.emailSend",
      "position": [
        656,
        4.76293103448279
      ],
      "webhookId": "46290c2a-08bd-43d7-bb85-112fceaed4b8",
      "parameters": {
        "text": "={{ $json.body }}",
        "options": {},
        "subject": "={{ $json.subject }}",
        "toEmail": "{{ $json.from }}",
        "fromEmail": "abc@gmail.com",
        "emailFormat": "text"
      },
      "credentials": {
        "smtp": {
          "id": "G1kyF8cSWTZ4vouN",
          "name": "SMTP -test"
        }
      },
      "typeVersion": 2.1
    },
    {
      "id": "c759dfb7-9935-41e0-9d38-e41ff48c8b0b",
      "name": "이메일 작성",
      "type": "n8n-nodes-base.code",
      "position": [
        436,
        4.76293103448279
      ],
      "parameters": {
        "jsCode": "// Get the input data (your JSON)\nconst data = items[0].json;\n\n// Build the email text\nlet emailText = `📊 Networking Report for ${data.user_profile.name}\\n`;\nemailText += `\\nInterests: ${data.user_profile.interests}`;\nemailText += `\\nTarget Industry: ${data.user_profile.target_industry}\\n`;\n\nemailText += `\\nSummary:\\n`;\nemailText += `- Total Profiles Found: ${data.summary.total_profiles_found}\\n`;\nemailText += `- Analyzed Connections: ${data.summary.analyzed_connections}\\n`;\nemailText += `- High Priority: ${data.summary.high_priority}\\n`;\nemailText += `- Medium Priority: ${data.summary.medium_priority}\\n`;\nemailText += `- Average Score: ${data.summary.average_score}\\n`;\n\nemailText += `\\nTop Connection Recommendations:\\n`;\ndata.connection_recommendations.forEach((rec, index) => {\n    emailText += `\\n${index + 1}. ${rec.name} (${rec.priority} Priority, Score: ${rec.aiScore})`;\n    emailText += `\\n   ${rec.description}`;\n    emailText += `\\n   Mutual Connections: ${rec.mutual_connections}`;\n    emailText += `\\n   Reason: ${rec.connectionReason}`;\n    emailText += `\\n   Suggested Message: \"${rec.suggestedMessage}\"\\n`;\n});\n\nemailText += `\\nNext Steps:\\n`;\ndata.next_steps.forEach((step, i) => {\n    emailText += `- ${step}\\n`;\n});\n\nemailText += `\\nAI Insights:\\n${data.ai_insights}\\n`;\n\nemailText += `\\nBest Networking Times:\\nDays: ${data.networking_strategy.best_days.join(\", \")}\\nTimes: ${data.networking_strategy.best_times.join(\", \")}\\n`;\n\nreturn [{\n    json: {\n        subject: `Networking Report - ${data.user_profile.name}`,\n        body: emailText\n    }\n}];\n"
      },
      "typeVersion": 2
    },
    {
      "id": "7e27272d-1c4e-4e15-b7be-f0ef85937c13",
      "name": "사용자 프로필 정보",
      "type": "n8n-nodes-base.set",
      "position": [
        -820,
        4.76293103448279
      ],
      "parameters": {
        "fields": {
          "values": [
            {
              "name": "Name"
            },
            {
              "name": "Position"
            },
            {
              "name": "Industry"
            },
            {
              "name": "Location"
            },
            {
              "name": "Skills"
            },
            {
              "name": "Interests"
            },
            {
              "name": "Target Roles"
            },
            {
              "name": "Company Types"
            }
          ]
        },
        "options": {}
      },
      "typeVersion": 3
    },
    {
      "id": "a9d1762a-aaf2-45a5-a5fc-381ec2d174c5",
      "name": "LinkedIn 검색 결과 처리",
      "type": "n8n-nodes-base.code",
      "position": [
        -380,
        4.76293103448279
      ],
      "parameters": {
        "jsCode": "// Process search results and extract LinkedIn profiles\nconst results = $json.organic_results || [];\n\n// Get user profile from the previous node\nconst userProfile = $input.first().json || {};\n\n// Filter and process LinkedIn profiles\nconst linkedinProfiles = results\n  .filter(result => {\n    const link = result.link || '';\n    return link.includes('linkedin.com/in/') && \n           !link.includes('/posts/') && \n           !link.includes('/activity/');\n  })\n  .map(result => {\n    let name = result.title || 'Unknown';\n    // Clean up the title to extract just the name\n    name = name.replace(/\\s*[-|]\\s*LinkedIn.*$/i, '').trim();\n    \n    return {\n      name: name,\n      headline: result.snippet || result.title || '',\n      link: result.link,\n      description: result.snippet || '',\n      source: 'Google Search via SerpAPI'\n    };\n  })\n  .slice(0, 15); // Limit to top 15 results\n\n// Safely extract skills - handle undefined/null values\nconst getFirstSkill = (skills) => {\n  if (!skills || typeof skills !== 'string') {\n    return '';\n  }\n  const skillsArray = skills.split(',');\n  return skillsArray.length > 0 ? skillsArray[0].trim() : '';\n};\n\n// Build search query with safe property access\nconst buildSearchQuery = () => {\n  const position = userProfile.Position || '';\n  const location = userProfile.Location || '';\n  const firstSkill = getFirstSkill(userProfile.Skills);\n  \n  return `site:linkedin.com/in \"${position}\" \"${location}\" ${firstSkill}`.trim();\n};\n\n// Return structured data for AI analysis\nreturn {\n  json: {\n    userProfile: {\n      name: $('Your Profile Information').first().json.Name || '',\n      current_position: $('Your Profile Information').first().json.Position || '',\n      industry: $('Your Profile Information').first().json.Industry || '',\n      location:  $('Your Profile Information').first().json.Location|| '',\n      skills: $('Your Profile Information').first().json.Skills|| '',\n      interests: $('Your Profile Information').first().json.Interests || '',\n      target_roles: $('Your Profile Information').first().json['Target Roles']|| '',\n      company_types: $('Your Profile Information').first().json['Company Types'] || ''\n    },\n    foundProfiles: linkedinProfiles,\n    totalFound: linkedinProfiles.length,\n    searchQuery: buildSearchQuery()\n  }\n};"
      },
      "typeVersion": 2,
      "alwaysOutputData": true
    },
    {
      "id": "808cb1fa-9970-4d0e-8d34-37eea340fdb4",
      "name": "최종 추천 생성",
      "type": "n8n-nodes-base.code",
      "position": [
        216,
        4.76293103448279
      ],
      "parameters": {
        "jsCode": "// Process AI recommendations and create final output\nconst inputData = $input.first();\nconst inputText = inputData.json?.text || inputData.json || inputData;\n\nlet aiRecommendations = {};\ntry {\n  // Extract JSON from the text content\n  const content = typeof inputText === 'string' ? inputText : JSON.stringify(inputText);\n  \n  // Try to parse JSON from the AI response\n  const jsonMatch = content.match(/```json\\n([\\s\\S]*?)\\n```/) || content.match(/\\{[\\s\\S]*\\}/);\n  if (jsonMatch) {\n    const jsonString = jsonMatch[1] || jsonMatch[0];\n    aiRecommendations = JSON.parse(jsonString);\n  } else {\n    throw new Error('No JSON found in response');\n  }\n} catch (error) {\n  console.log('Could not parse AI response:', error.message);\n  console.log('Input data:', inputData);\n  \n  // Create fallback recommendations if parsing fails\n  aiRecommendations = {\n    scored_profiles: [],\n    top_connections: [],\n    connection_strategies: [],\n    networking_insights: 'Focus on building meaningful professional relationships in your industry.'\n  };\n}\n\n// Helper function to safely split and get first element\nfunction safeGetFirst(str, delimiter = ',') {\n  if (!str || typeof str !== 'string') return '';\n  const parts = str.split(delimiter);\n  return parts.length > 0 ? parts[0].trim() : '';\n}\n\n// Helper function to safely split string\nfunction safeSplit(str, delimiter = ',') {\n  if (!str || typeof str !== 'string') return [];\n  return str.split(delimiter).map(item => item.trim()).filter(item => item);\n}\n\n// Helper function to generate connection message\nfunction generateConnectionMessage(profile, index) {\n  if (!profile || !profile.name) return 'Hi! I\\'d love to connect and share professional insights.';\n  \n  const firstName = safeGetFirst(profile.name, ' ');\n  const description = profile.description || '';\n  \n  // Create personalized messages based on profile\n  if (description.toLowerCase().includes('devops')) {\n    return `Hi ${firstName}, I'm interested in DevOps and cloud technologies. I'd love to connect and learn from your experience!`;\n  } else if (description.toLowerCase().includes('aws') || description.toLowerCase().includes('cloud')) {\n    return `Hi ${firstName}, I noticed your expertise in cloud computing. Would love to connect and share insights about the industry!`;\n  } else {\n    return `Hi ${firstName}, I'd love to connect with a fellow professional and learn from your experience in the industry.`;\n  }\n}\n\n// Helper function to extract tags from description\nfunction extractTags(description) {\n  if (!description) return ['Professional Contact'];\n  \n  const tags = [];\n  const descText = description.toLowerCase();\n  \n  // Add technology tags\n  const techs = ['aws', 'azure', 'gcp', 'devops', 'terraform', 'ansible', 'jenkins', 'kubernetes', 'docker'];\n  techs.forEach(tech => {\n    if (descText.includes(tech)) {\n      tags.push(tech.toUpperCase());\n    }\n  });\n  \n  // Add role tags\n  if (descText.includes('senior') || descText.includes('lead')) {\n    tags.push('Senior Level');\n  }\n  \n  if (descText.includes('mentor') || descText.includes('enthusiast')) {\n    tags.push('Mentor');\n  }\n  \n  return tags.length > 0 ? tags : ['Professional Contact'];\n}\n\n// Process the connections from AI recommendations\nconst connections = aiRecommendations.top_connections || [];\nconst scoredProfiles = aiRecommendations.scored_profiles || [];\n\nconst enhancedConnections = connections.map((profile, index) => {\n  // Find matching score data\n  const scoreData = scoredProfiles.find(p => \n    p.name && profile.name && \n    p.name.toLowerCase().trim() === profile.name.toLowerCase().trim()\n  );\n  \n  const score = scoreData?.score || (9.5 - index * 0.3); // Fallback scoring\n  \n  return {\n    name: profile.name || 'Unknown',\n    description: profile.description || '',\n    connections: profile.connections || 0,\n    mutual_connections: profile.mutual_connections || 0,\n    priority: score >= 8.5 ? 'High' : score >= 7.5 ? 'Medium' : 'Low',\n    aiScore: score,\n    connectionReason: scoreData?.reasons?.join(', ') || 'Professional networking opportunity',\n    suggestedMessage: generateConnectionMessage(profile, index),\n    tags: extractTags(profile.description),\n    estimatedResponseRate: score >= 8.5 ? 'High (70-90%)' : score >= 7.5 ? 'Medium (40-70%)' : 'Low (20-40%)',\n    link: profile.link || '#'\n  };\n}).sort((a, b) => b.aiScore - a.aiScore); // Sort by AI score\n\n// Create individual connection strategies\nconst connectionStrategies = enhancedConnections.map(conn => {\n  const firstName = safeGetFirst(conn.name, ' ');\n  return `${firstName}: ${conn.suggestedMessage.replace(`Hi ${firstName}, `, '')}`;\n});\n\nreturn {\n  json: {\n    summary: {\n      total_profiles_found: scoredProfiles.length,\n      analyzed_connections: enhancedConnections.length,\n      high_priority: enhancedConnections.filter(c => c.priority === 'High').length,\n      medium_priority: enhancedConnections.filter(c => c.priority === 'Medium').length,\n      low_priority: enhancedConnections.filter(c => c.priority === 'Low').length,\n      average_score: enhancedConnections.length > 0 ? \n        (enhancedConnections.reduce((sum, c) => sum + c.aiScore, 0) / enhancedConnections.length).toFixed(1) : 0\n    },\n    user_profile: {\n      name: \"Vrushti Sukhadiya\", // Extracted from the analysis text\n      interests: \"DevOps, Cloud Computing, Automation\",\n      target_industry: \"IT, Tech Startups, Cloud Companies\"\n    },\n    connection_recommendations: enhancedConnections,\n    connection_strategies: connectionStrategies,\n    ai_insights: aiRecommendations.networking_insights || 'Focus on building meaningful professional relationships in your industry.',\n    networking_strategy: {\n      weekly_goal: '5-10 new connections',\n      best_days: ['Tuesday', 'Wednesday', 'Thursday'],\n      best_times: ['9-11 AM', '2-4 PM'],\n      follow_up_schedule: 'Within 48 hours of connection acceptance',\n      focus_areas: ['DevOps professionals', 'Cloud Computing experts', 'AI/ML enthusiasts']\n    },\n    next_steps: [\n      'Start with highest-scored profiles (Mihir Suthar - 9.5, Muneeswaran M - 9.2)',\n      'Check for mutual connections before reaching out',\n      'Engage with their recent posts about DevOps/Cloud topics',\n      'Send personalized connection requests highlighting common interests',\n      'Follow up with thoughtful messages about industry trends',\n      'Consider attending DevOps/Cloud computing events where they might be present'\n    ],\n    top_recommendations: enhancedConnections.slice(0, 3).map(conn => ({\n      name: conn.name,\n      why_connect: conn.connectionReason,\n      action_item: `Connect with ${safeGetFirst(conn.name, ' ')} focusing on ${conn.tags.slice(0, 2).join(' and ')} expertise`\n    }))\n  }\n};"
      },
      "typeVersion": 2
    },
    {
      "id": "e1b30786-455f-414f-9577-36634a0c1cd9",
      "name": "이메일에서 사용자 데이터 가져오기",
      "type": "n8n-nodes-base.emailReadImap",
      "position": [
        -1040,
        4.76293103448279
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "imap": {
          "id": "zTEGYssr7MSVeCs3",
          "name": "IMAP-test"
        }
      },
      "typeVersion": 2
    },
    {
      "id": "02259afc-6178-49f4-b08c-82dc7667bd06",
      "name": "스티키 노트",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -940,
        -420
      ],
      "parameters": {
        "width": 680,
        "height": 340,
        "content": "## System Architecture\n- **Profile Analysis Pipeline**:\n  - **Get User Data from Email**: Initiates with manual user input.\n  - **Your Profile Information**: Provides initial data.\n  - **Search LinkedIn Profiles**: Fetches profile data via API.\n  - **Process LinkedIn Search Results**: Extracts relevant information.\n- **AI Recommendation Flow**:\n  - **AI Profile Analysis**: Analyzes data with AI.\n  - **Create Recommendations**: Generates initial connection list.\n  - **Create Final Recommendations**: Refines the list.\n- **Delivery Flow**:\n  - **Create Email**: Prepares the email content.\n  - **Send Email**: Sends the curated list to the user."
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "9073190a-946e-4f57-998d-365de4ec3ae8",
  "connections": {
    "c759dfb7-9935-41e0-9d38-e41ff48c8b0b": {
      "main": [
        [
          {
            "node": "482f65e9-4075-4d60-8bc8-3c078f8c7acc",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "d8205e9b-e176-477c-a8e7-2f1eb94bc3cb": {
      "ai_languageModel": [
        [
          {
            "node": "34999f59-ae4b-4ef6-9603-bc5f6b2798d0",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "34999f59-ae4b-4ef6-9603-bc5f6b2798d0": {
      "main": [
        [
          {
            "node": "808cb1fa-9970-4d0e-8d34-37eea340fdb4",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "ef9e2f3b-c06a-484a-8903-2f37b35728f3": {
      "main": [
        [
          {
            "node": "a9d1762a-aaf2-45a5-a5fc-381ec2d174c5",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "7e27272d-1c4e-4e15-b7be-f0ef85937c13": {
      "main": [
        [
          {
            "node": "ef9e2f3b-c06a-484a-8903-2f37b35728f3",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "e1b30786-455f-414f-9577-36634a0c1cd9": {
      "main": [
        [
          {
            "node": "7e27272d-1c4e-4e15-b7be-f0ef85937c13",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "808cb1fa-9970-4d0e-8d34-37eea340fdb4": {
      "main": [
        [
          {
            "node": "c759dfb7-9935-41e0-9d38-e41ff48c8b0b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a9d1762a-aaf2-45a5-a5fc-381ec2d174c5": {
      "main": [
        [
          {
            "node": "34999f59-ae4b-4ef6-9603-bc5f6b2798d0",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
자주 묻는 질문

이 워크플로우를 어떻게 사용하나요?

위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.

이 워크플로우는 어떤 시나리오에 적합한가요?

중급 - 리드 생성, 멀티모달 AI

유료인가요?

이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.

워크플로우 정보
난이도
중급
노드 수10
카테고리2
노드 유형8
난이도 설명

일정 경험을 가진 사용자를 위한 6-15개 노드의 중간 복잡도 워크플로우

저자
Oneclick AI Squad

Oneclick AI Squad

@oneclick-ai

The AI Squad Initiative is a pioneering effort to build, automate and scale AI-powered workflows using n8n.io. Our mission is to help individuals and businesses integrate AI agents seamlessly into their daily operations from automating tasks and enhancing productivity to creating innovative, intelligent solutions. We design modular, reusable AI workflow templates that empower creators, developers and teams to supercharge their automation with minimal effort and maximum impact.

외부 링크
n8n.io에서 보기

이 워크플로우 공유

카테고리

카테고리: 34