Google 트렌드, 뉴스, Firecrawl 및 Claude AI를 사용한 자동화된 콘텐츠 전략
고급
이것은Market Research, Multimodal AI분야의자동화 워크플로우로, 22개의 노드를 포함합니다.주로 Set, Code, Aggregate, SerpApi, GoogleSheets 등의 노드를 사용하며. Google 트렌드, 뉴스, Firecrawl 및 Claude AI를 사용한 자동화된 콘텐츠 전략
사전 요구사항
- •Google Sheets API 인증 정보
- •Anthropic API Key
사용된 노드 (22)
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
"meta": {
"instanceId": "393ca9e36a1f81b0f643c72792946a5fe5e49eb4864181ba4032e5a408278263",
"templateCredsSetupCompleted": true
},
"nodes": [
{
"id": "1c6e3667-2a2b-43be-ba3e-9b94db926e54",
"name": "구조화된 출력 파서",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
1072,
208
],
"parameters": {
"jsonSchemaExample": "{\n\t\"query1\": [\"query\", \"évolution\"],\n \"query2\": [\"query\", \"évolution\"],\n \"query3\": [\"query\", \"évolution\"]\n}"
},
"typeVersion": 1.3
},
{
"id": "a6c8f655-2052-4791-b9ba-57e6a3a48397",
"name": "항목 반복",
"type": "n8n-nodes-base.splitInBatches",
"position": [
208,
0
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "566c1440-e01d-4721-baf2-faf9ed110f98",
"name": "Anthropic 채팅 모델",
"type": "@n8n/n8n-nodes-langchain.lmChatAnthropic",
"position": [
880,
208
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "claude-sonnet-4-20250514",
"cachedResultName": "Claude Sonnet 4"
},
"options": {}
},
"credentials": {
"anthropicApi": {
"id": "WXQf5QsxCs3AyxlW",
"name": "Anthropic account"
}
},
"typeVersion": 1.3
},
{
"id": "7214cc02-1302-413a-9c90-811dfa916302",
"name": "항목 반복1",
"type": "n8n-nodes-base.splitInBatches",
"position": [
2048,
0
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "93b8e495-f6e7-445d-a41f-e8cfd4a2c8ff",
"name": "항목 반복2",
"type": "n8n-nodes-base.splitInBatches",
"position": [
2656,
0
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "2a0d938c-e799-403f-ac8b-e9f847823a5b",
"name": "Anthropic 채팅 모델1",
"type": "@n8n/n8n-nodes-langchain.lmChatAnthropic",
"position": [
3136,
496
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "claude-sonnet-4-20250514",
"cachedResultName": "Claude 4 Sonnet"
},
"options": {}
},
"credentials": {
"anthropicApi": {
"id": "WXQf5QsxCs3AyxlW",
"name": "Anthropic account"
}
},
"typeVersion": 1.3
},
{
"id": "cef2ba4d-426d-447a-b905-4ad324bf7002",
"name": "Search trend",
"type": "n8n-nodes-serpapi.serpApi",
"position": [
480,
0
],
"parameters": {
"q": "={{ $json.Query }}",
"operation": "google_trends",
"requestOptions": {},
"additionalFields": {
"hl": "fr",
"geo": "FR",
"date": "today 1-m",
"data_type": "RELATED_QUERIES"
}
},
"credentials": {
"serpApi": {
"id": "w1oDmQzMKE4Wcj2P",
"name": "SerpAPI account"
}
},
"typeVersion": 1
},
{
"id": "435c4eb8-6225-4566-af04-6baf8f6743a7",
"name": "Création feuille sheets",
"type": "n8n-nodes-base.googleSheets",
"position": [
1584,
0
],
"parameters": {
"title": "={{ new Date(new Date().setMonth(new Date().getMonth() - 1)).toLocaleDateString('fr-FR', { month: 'long' }).charAt(0).toUpperCase() + new Date(new Date().setMonth(new Date().getMonth() - 1)).toLocaleDateString('fr-FR', { month: 'long' }).slice(1) }} {{ $('Loop Over Items').item.json.Query }}",
"options": {},
"operation": "create",
"documentId": {
"__rl": true,
"mode": "url",
"value": "https://docs.google.com/spreadsheets/d/1z7iP_i98PT9BQuUypAi0c3NHkdhREEPJWkDjyj8Snfw"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "wBRLUCktxqXE6DVJ",
"name": "Google Sheets account"
}
},
"typeVersion": 4.6
},
{
"id": "e85b3aed-3e1d-4ca1-a515-38e576341ed2",
"name": "Search GNews",
"type": "n8n-nodes-serpapi.serpApi",
"position": [
2304,
0
],
"parameters": {
"q": "={{ $json.Query }}",
"operation": "google_news",
"requestOptions": {},
"additionalFields": {
"gl": "fr",
"hl": "fr"
}
},
"credentials": {
"serpApi": {
"id": "w1oDmQzMKE4Wcj2P",
"name": "SerpAPI account"
}
},
"typeVersion": 1
},
{
"id": "c6f64302-5e32-4aea-aebf-0be722ce2865",
"name": "Return URL only",
"type": "n8n-nodes-base.code",
"position": [
2480,
0
],
"parameters": {
"jsCode": "// Récupérer les données d'entrée\nconst inputData = $input.all()[0].json;\n\n// Extraire les résultats de news\nconst newsResults = inputData.news_results || [];\n\n// Trier par position (ordre croissant)\nconst sortedResults = newsResults.sort((a, b) => a.position - b.position);\n\n// Prendre les 3 premiers résultats et extraire seulement l'URL\nconst top3Results = sortedResults.slice(0, 3).map(result => ({\n link: result.link\n}));\n\n// Retourner les 3 premiers résultats\nreturn top3Results.map(item => ({ json: item }));"
},
"typeVersion": 2
},
{
"id": "e8deaa80-c2e0-4d71-9c81-d47becaee6fd",
"name": "Scrape articles",
"type": "@mendable/n8n-nodes-firecrawl.firecrawl",
"position": [
2912,
0
],
"parameters": {
"url": "={{ $json.link }}",
"operation": "scrape",
"requestOptions": {}
},
"credentials": {
"firecrawlApi": {
"id": "E34WDB80ik5VHjiI",
"name": "Firecrawl account"
}
},
"typeVersion": 1
},
{
"id": "979755ba-7d54-4240-aca7-a9febea049d7",
"name": "일정 트리거",
"type": "n8n-nodes-base.scheduleTrigger",
"position": [
-224,
0
],
"parameters": {
"rule": {
"interval": [
{
"field": "cronExpression",
"expression": "0 8 1 * *"
}
]
}
},
"typeVersion": 1.2
},
{
"id": "05229024-42ae-4f30-bd46-e614abc649af",
"name": "메모1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1696,
-768
],
"parameters": {
"color": 4,
"width": 776,
"height": 2292,
"content": "# Automated trend monitoring for content strategy\n\n## Who's it for\nContent creators, marketers, and social media managers who want to stay ahead of emerging trends and generate relevant content ideas based on data-driven insights.\n\n## What it does\nThis workflow automatically identifies trending topics related to your industry, collects recent news articles about these trends, and generates content suggestions. It transforms raw trend data into actionable editorial opportunities by analyzing search volume growth and current news coverage.\n\n## How it works\nThe workflow follows a three-step automation process:\n\nTrend Analysis: Examines searches related to your topics and identifies those with the strongest recent growth\nArticle Collection: Searches Google News for current articles about emerging trends and scrapes their full content\nContent Generation: Creates personalized content suggestions based on collected articles and trend data\n\nThe system automatically excludes geo-localized searches to provide a global perspective on trends, though this can be customized.\n\n## Requirements\n\nSerpAPI account (for trend and news data)\nFirecrawl API key (for scraping article content from Google News results)\nGoogle Sheets access\nAI model API key (for content analysis and recommendations - you can use any LLM provider you prefer)\n\n## How to set up\n### Step 1: Prepare your tracking sheet\nDuplicate this [Google Sheets template ](https://docs.google.com/spreadsheets/d/1z7iP_i98PT9BQuUypAi0c3NHkdhREEPJWkDjyj8Snfw)\nRename your copy and ensure it's accessible\n\n### Step 2: Configure API credentials\nBefore running the workflow, set up the following credentials in n8n:\n\nSerpAPI: For trend analysis and Google News search\nFirecrawl API: For scraping article content\nAI Model API: For content analysis and recommendations (Anthropic Claude, OpenAI GPT, or any other LLM provider)\nGoogle Sheets OAuth2: For accessing and updating your tracking spreadsheet\n\n### Step 3: Configure the workflow\nIn the \"Get Query\" node, paste your duplicated Google Sheets URL in the \"Document\" field\nIn your Google Sheet \"Query\" tab, enter the topics you want to monitor\n\n### Step 4: Customize language and location settings\nThe workflow is currently configured for French content and France location. You can modify these settings in the SerpAPI nodes:\n\nLanguage (hl): Change from \"fr\" to your preferred language code\nGeographic location (geo/gl): Change from \"FR\" to your target country code\nDate range: Currently set to \"today 1-m\" (last month) but can be adjusted\n\n### Step 5: Adjust filtering (optional)\nThe \"Sorting Queries\" node excludes geo-localized queries by default. You can modify the AI agent's instructions to include location-specific queries or change filtering criteria based on your requirements.\n### Step 6: Configure scheduling (optional)\nThe workflow includes an automated scheduler that runs monthly (1st day of each month at 8 AM). You can modify the cron expression 0 8 1 * * in the Schedule Trigger node to change:\n\nFrequency (daily, weekly, monthly)\nTime of execution\nDay of the month\n\n## How to customize the workflow\n\nChange trend count: The workflow processes up to 10 related queries per topic but filters them through AI to select the most relevant non-geolocalized ones\nAdjust article collection: Currently collects exactly 3 news articles per query for analysis\nContent style: Customize the AI prompts in content generation nodes to match your brand voice\nOutput format: Modify the Google Sheets structure to include additional data points\nAI model: Replace the Anthropic model with your preferred LLM provider\nScraping options: Configure Firecrawl settings to extract specific content elements from articles\n\n## Results interpretation\n\nFor each monitored topic, the workflow generates a separate sheet named by month and topic (e.g., \"January Digital Marketing\") containing:\nData structure (four columns):\n\nQuery: The trending search term ranked by growth\nÉvolution: Growth percentage over the last month\nNews: Links to 3 relevant news articles\nIdée: AI-generated content suggestions based on comprehensive article analysis\n\nThe workflow provides monthly retrospective analysis, helping you identify emerging topics before competitors and optimize your content calendar with high-potential subjects.\n\n## Workflow limitations\n\nProcesses up to 10 related queries per topic with AI filtering\nCollects exactly 3 news articles per query\nResults are automatically organized in monthly sheets\nRequires stable internet connection for API calls"
},
"typeVersion": 1
},
{
"id": "8a61dc73-4805-434a-85b9-8088f25bb28d",
"name": "Get Query",
"type": "n8n-nodes-base.googleSheets",
"position": [
-16,
0
],
"parameters": {
"options": {},
"sheetName": {
"__rl": true,
"mode": "name",
"value": "Query"
},
"documentId": {
"__rl": true,
"mode": "url",
"value": "=https://docs.google.com/spreadsheets/d/1z7iP_i98PT9BQuUypAi0c3NHkdhREEPJWkDjyj8Snfw"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "wBRLUCktxqXE6DVJ",
"name": "Google Sheets account"
}
},
"typeVersion": 4.6
},
{
"id": "5a61f1ba-682d-4ce9-9ab5-25b6278c6fd5",
"name": "Classing query",
"type": "n8n-nodes-base.code",
"position": [
688,
0
],
"parameters": {
"jsCode": "// N8N Code Node - Create Nested Structure for Related Queries\n// This code creates a nested structure: Topic -> related queries\n// Get the input data (assuming it's the first item)\nconst inputData = $input.all()[0].json;\n// Initialize arrays to store extracted data\nlet relatedQueries = [];\nlet risingQueries = [];\ntry {\n // Check if the response contains related_queries data\n if (inputData.related_queries) {\n \n // Extract \"top\" related queries if they exist\n if (inputData.related_queries.top) {\n relatedQueries = \n inputData.related_queries.top.map((query, index) => ({\n query: query.query,\n value: query.value,\n extracted_value: query.extracted_value,\n link: query.link,\n serpapi_link: query.serpapi_link,\n type: 'top',\n rank: index + 1\n }));\n }\n \n // Extract \"rising\" related queries if they exist\n if (inputData.related_queries.rising) {\n risingQueries = \n inputData.related_queries.rising.map((query, index) => ({\n query: query.query,\n value: query.value,\n extracted_value: query.extracted_value,\n link: query.link,\n serpapi_link: query.serpapi_link,\n type: 'rising',\n rank: index + 1\n }));\n }\n }\n \n // Combine all queries with their types\n const allQueries = [...relatedQueries, ...risingQueries];\n \n // Sort by extracted_value (descending) to get top performers\n const sortedQueries = allQueries.sort((a, b) => {\n const aVal = typeof a.extracted_value === 'number' ? a.extracted_value : 0;\n const bVal = typeof b.extracted_value === 'number' ? b.extracted_value : 0;\n return bVal - aVal;\n });\n \n // Get top 10 queries\n const top10Queries = sortedQueries.slice(0, 10);\n \n // Return only top 10 queries\n return [\n {\n json: {\n topic: inputData.search_parameters?.q || 'Unknown',\n top_10_queries: top10Queries\n }\n }\n ];\n \n} catch (error) {\n // Handle errors gracefully\n return [\n {\n json: {\n error: 'Failed to extract and structure related queries data',\n error_message: error.message,\n topic: inputData.search_parameters?.q || 'Unknown'\n }\n }\n ];\n}"
},
"typeVersion": 2
},
{
"id": "8b337af3-c190-4113-82aa-ce8fe9abbc12",
"name": "정렬ing queries",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
912,
0
],
"parameters": {
"text": "=Votre tâche est de sélectionner lister les requêtes qui correspond étroitement au créneau de \"{{ $('Loop Over Items').item.json.Query }}\" mais elle ne doit pas être géolocalisée, par exemple \"{{ $('Loop Over Items').item.json.Query }} Paris\" car nous ne voulons pas de sujets liés à la localisation.\n\nPour chaque requête indique son évolution en pourcentage (sans le +).\n\n{{ JSON.stringify($json.top_10_queries, null, 2) }}\n\n",
"batching": {},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.7
},
{
"id": "28bf3218-140a-4eae-9758-5ac06574964a",
"name": "정렬ing output > table",
"type": "n8n-nodes-base.code",
"position": [
1280,
0
],
"parameters": {
"jsCode": "// Récupérer les données d'entrée\nconst inputData = $input.all()[0].json.output;\n\n// Initialiser le tableau de sortie\nlet restructuredData = [];\n\n// Parcourir chaque query dans l'objet\nObject.keys(inputData).forEach(key => {\n const queryData = inputData[key];\n \n restructuredData.push({\n Query: queryData[0], // Le nom de la requête\n Évolution: queryData[1], // Le pourcentage d'évolution\n News: \"\", // Colonne vide pour l'instant\n Idée: \"\" // Colonne vide pour l'instant\n }); \n});\n\n// Retourner le tableau restructuré\nreturn restructuredData.map(item => ({ json: item }));"
},
"typeVersion": 2
},
{
"id": "a2002422-28b1-4c58-b3a0-850cd6a63591",
"name": "Add datas",
"type": "n8n-nodes-base.googleSheets",
"position": [
1584,
176
],
"parameters": {
"columns": {
"value": {},
"schema": [],
"mappingMode": "autoMapInputData",
"matchingColumns": [],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "append",
"sheetName": {
"__rl": true,
"mode": "name",
"value": "={{ new Date(new Date().setMonth(new Date().getMonth() - 1)).toLocaleDateString('fr-FR', { month: 'long' }).charAt(0).toUpperCase() + new Date(new Date().setMonth(new Date().getMonth() - 1)).toLocaleDateString('fr-FR', { month: 'long' }).slice(1) }} {{ $('Loop Over Items').item.json.Query }}"
},
"documentId": {
"__rl": true,
"mode": "url",
"value": "https://docs.google.com/spreadsheets/d/1z7iP_i98PT9BQuUypAi0c3NHkdhREEPJWkDjyj8Snfw"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "wBRLUCktxqXE6DVJ",
"name": "Google Sheets account"
}
},
"typeVersion": 4.6
},
{
"id": "c1134ef9-865b-4cf4-aa96-a14121f10fe0",
"name": "필터 queries",
"type": "n8n-nodes-base.set",
"position": [
1824,
0
],
"parameters": {
"include": "selected",
"options": {},
"assignments": {
"assignments": [
{
"id": "245bf100-21a3-4de2-9b92-74e09e3347a7",
"name": "Query",
"type": "string",
"value": "={{ $json.Query }}"
}
]
},
"includeOtherFields": true
},
"typeVersion": 3.4
},
{
"id": "e51a3336-4a8a-407e-9529-37658bf74132",
"name": "Compile datas",
"type": "n8n-nodes-base.aggregate",
"position": [
2928,
288
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData"
},
"typeVersion": 1
},
{
"id": "e7aa0bac-7576-4d55-b0be-411cb7c60b7f",
"name": "Article analysis",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
3184,
288
],
"parameters": {
"text": "=Source 1\n\n{{ $json.data[0].data.markdown }}\n\nSource 2 \n\n{{ $json.data[1].data.markdown }}\n\nSource 3\n\n{{ $json.data[2].data.markdown }}\n",
"batching": {},
"messages": {
"messageValues": [
{
"message": "=Voilà le contenu de 3 article sur le thème \"{{ $('Loop Over Items').item.json.Query }}\", peux tu les analyser en en déduire 3 idée d'article de blog SEO avec à chaque fois une proposition de mot clé associé.\n\nExemple : \nThème de l'article 1, proposition de mot clé 1\nThème de l'article 2, proposition de mot clé 2\nThème de l'article 3, proposition de mot clé 3\n\nNe fais pas d'introduction ou de conclusion à ta réponse répond simplement à la requête"
}
]
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "c3918ddb-f7e6-4021-8c0d-71f36e5ae5ff",
"name": "Add article datas",
"type": "n8n-nodes-base.googleSheets",
"position": [
3552,
288
],
"parameters": {
"columns": {
"value": {
"News": "={{ $('Search GNews').item.json.news_results[0].link }}\n{{ $('Search GNews').item.json.news_results[1].link }}\n{{ $('Search GNews').item.json.news_results[2].link }}",
"Idée": "={{ $json.text }}",
"Query": "={{ $('Loop Over Items1').item.json.Query }}"
},
"schema": [
{
"id": "Query",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Query",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Évolution",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Évolution",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "News",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "News",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Idée",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Idée",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "row_number",
"type": "string",
"display": true,
"removed": false,
"readOnly": true,
"required": false,
"displayName": "row_number",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"Query"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "update",
"sheetName": {
"__rl": true,
"mode": "name",
"value": "={{ new Date(new Date().setMonth(new Date().getMonth() - 1)).toLocaleDateString('fr-FR', { month: 'long' }).charAt(0).toUpperCase() + new Date(new Date().setMonth(new Date().getMonth() - 1)).toLocaleDateString('fr-FR', { month: 'long' }).slice(1) }} {{ $('Loop Over Items').item.json.Query }}"
},
"documentId": {
"__rl": true,
"mode": "url",
"value": "https://docs.google.com/spreadsheets/d/1z7iP_i98PT9BQuUypAi0c3NHkdhREEPJWkDjyj8Snfw"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "wBRLUCktxqXE6DVJ",
"name": "Google Sheets account"
}
},
"typeVersion": 4.6
}
],
"pinData": {},
"connections": {
"a2002422-28b1-4c58-b3a0-850cd6a63591": {
"main": [
[
{
"node": "Filter queries",
"type": "main",
"index": 0
}
]
]
},
"8a61dc73-4805-434a-85b9-8088f25bb28d": {
"main": [
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
},
"e85b3aed-3e1d-4ca1-a515-38e576341ed2": {
"main": [
[
{
"node": "c6f64302-5e32-4aea-aebf-0be722ce2865",
"type": "main",
"index": 0
}
]
]
},
"cef2ba4d-426d-447a-b905-4ad324bf7002": {
"main": [
[
{
"node": "5a61f1ba-682d-4ce9-9ab5-25b6278c6fd5",
"type": "main",
"index": 0
}
]
]
},
"e51a3336-4a8a-407e-9529-37658bf74132": {
"main": [
[
{
"node": "e7aa0bac-7576-4d55-b0be-411cb7c60b7f",
"type": "main",
"index": 0
}
]
]
},
"5a61f1ba-682d-4ce9-9ab5-25b6278c6fd5": {
"main": [
[
{
"node": "Sorting queries",
"type": "main",
"index": 0
}
]
]
},
"Filter queries": {
"main": [
[
{
"node": "Loop Over Items1",
"type": "main",
"index": 0
}
]
]
},
"Loop Over Items": {
"main": [
[],
[
{
"node": "cef2ba4d-426d-447a-b905-4ad324bf7002",
"type": "main",
"index": 0
}
]
]
},
"c6f64302-5e32-4aea-aebf-0be722ce2865": {
"main": [
[
{
"node": "Loop Over Items2",
"type": "main",
"index": 0
}
]
]
},
"e8deaa80-c2e0-4d71-9c81-d47becaee6fd": {
"main": [
[
{
"node": "Loop Over Items2",
"type": "main",
"index": 0
}
]
]
},
"Sorting queries": {
"main": [
[
{
"node": "Sorting output > table",
"type": "main",
"index": 0
}
]
]
},
"e7aa0bac-7576-4d55-b0be-411cb7c60b7f": {
"main": [
[
{
"node": "c3918ddb-f7e6-4021-8c0d-71f36e5ae5ff",
"type": "main",
"index": 0
}
]
]
},
"Loop Over Items1": {
"main": [
[],
[
{
"node": "e85b3aed-3e1d-4ca1-a515-38e576341ed2",
"type": "main",
"index": 0
}
]
]
},
"Loop Over Items2": {
"main": [
[
{
"node": "e51a3336-4a8a-407e-9529-37658bf74132",
"type": "main",
"index": 0
}
],
[
{
"node": "e8deaa80-c2e0-4d71-9c81-d47becaee6fd",
"type": "main",
"index": 0
}
]
]
},
"Schedule Trigger": {
"main": [
[
{
"node": "8a61dc73-4805-434a-85b9-8088f25bb28d",
"type": "main",
"index": 0
}
]
]
},
"c3918ddb-f7e6-4021-8c0d-71f36e5ae5ff": {
"main": [
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
},
"Anthropic Chat Model": {
"ai_languageModel": [
[
{
"node": "Sorting queries",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Anthropic Chat Model1": {
"ai_languageModel": [
[
{
"node": "e7aa0bac-7576-4d55-b0be-411cb7c60b7f",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Sorting output > table": {
"main": [
[
{
"node": "435c4eb8-6225-4566-af04-6baf8f6743a7",
"type": "main",
"index": 0
},
{
"node": "a2002422-28b1-4c58-b3a0-850cd6a63591",
"type": "main",
"index": 0
}
]
]
},
"435c4eb8-6225-4566-af04-6baf8f6743a7": {
"main": [
[]
]
},
"Structured Output Parser": {
"ai_outputParser": [
[
{
"node": "Sorting queries",
"type": "ai_outputParser",
"index": 0
}
]
]
}
}
}자주 묻는 질문
이 워크플로우를 어떻게 사용하나요?
위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.
이 워크플로우는 어떤 시나리오에 적합한가요?
고급 - 시장 조사, 멀티모달 AI
유료인가요?
이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.
관련 워크플로우 추천
Discord 및 Google 뉴스용 Claude 4 AI 분석을 통한 자동화된 뉴스 모니터링
Discord 및 Google 뉴스를 위한 Claude 4 AI 분석을 포함한 자동화된 뉴스 모니터링
Code
Discord
Aggregate
+
Code
Discord
Aggregate
30 노드Growth AI
기타
YouTube 댓글 감정 및 키워드 추출기
Gemini AI를 사용하여 YouTube 댓글 감성 및 키워드 분석 및 Telegram으로 보고
Set
Code
Telegram
+
Set
Code
Telegram
20 노드Budi SJ
시장 조사
Claude AI와 경쟁 분석을 사용한 SEO 콘텐츠 생성기
사용Claude AI와Apify 경쟁 분석으로 SEO 콘텐츠 생성
If
Code
Filter
+
If
Code
Filter
36 노드Growth AI
콘텐츠 제작
Claude AI, 경쟁 분석 및 Supabase RAG을 사용한 SEO 콘텐츠 생성기
사용Claude AI, 경쟁 분석, Supabase RAG으로 SEO 콘텐츠 생성
If
Code
Filter
+
If
Code
Filter
40 노드Growth AI
콘텐츠 제작
제품 이미지에서 UGC 비디오 생성 (Gemini와 VEO3)
Gemini와 VEO3를 사용하여 제품 이미지에서 UGC 비디오 생성
Set
Code
Wait
+
Set
Code
Wait
32 노드Growth AI
콘텐츠 제작
WordPress 블로그 자동화 프로페셔널 에디션(심층 연구) v2.1 마켓
GPT-4o, Perplexity AI 및 다국어 지원을 사용한 SEO 최적화 블로그 생성 자동화
If
Set
Xml
+
If
Set
Xml
125 노드Daniel Ng
콘텐츠 제작