我的客户智能引擎
高级
这是一个Market Research, AI Summarization领域的自动化工作流,包含 25 个节点。主要使用 Code, Gmail, Merge, Reddit, SerpApi 等节点。 使用 Anthropic、Reddit、X 和 SerpAPI 进行客户痛点分析和 AI 简报
前置要求
- •Google 账号和 Gmail API 凭证
- •可能需要目标 API 的认证凭证
- •Google Sheets API 凭证
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "PgYCSNco4ZUxp1Qf",
"meta": {
"instanceId": "766c8c237f056d009bb1bd53e73633458b146427b1ae9c6ec10561694aa89152",
"templateCredsSetupCompleted": true
},
"name": "我的客户智能引擎",
"tags": [],
"nodes": [
{
"id": "b8dd0104-33f0-427b-907e-c71cd7366c39",
"name": "合并",
"type": "n8n-nodes-base.merge",
"position": [
560,
-112
],
"parameters": {
"numberInputs": 3
},
"typeVersion": 3.2
},
{
"id": "e4b66790-4ffb-4605-a831-fe0a34c6745d",
"name": "过滤和标记 Reddit",
"type": "n8n-nodes-base.code",
"position": [
176,
256
],
"parameters": {
"jsCode": "\nreturn $input.all()\n .filter(item => $input.first().json.score > 5) \n .map(item => ({\n json: {\n title: $input.first().json.title,\n text: $input.first().json.selftext,\n source_url: $input.first().json.url,\n source: 'Reddit',\n full_text: `${item.json.title} ${item.json.selftext}`\n }\n }));"
},
"typeVersion": 2
},
{
"id": "116053e4-cf92-4e90-a817-e54744a511c8",
"name": "分类和情感分析",
"type": "n8n-nodes-base.code",
"position": [
880,
-96
],
"parameters": {
"jsCode": "return $input.all().map(item => {\n const text = item.json.full_text.toLowerCase();\n let pain_point = 'Uncategorized';\n let sentiment = 0; \n\n if (text.includes('wait') || text.includes('hold') || text.includes('busy signal')) {\n pain_point = 'Call Hold/Availability';\n sentiment -= 2;\n } else if (text.includes('schedule') || text.includes('cancel') || text.includes('missed appointment')) {\n pain_point = 'Scheduling Inefficiency';\n sentiment -= 3;\n } else if (text.includes('rude') || text.includes('snippy') || text.includes('unhelpful')) {\n pain_point = 'Receptionist Tone/Quality';\n sentiment -= 3;\n } else if (text.includes('code') || text.includes('system') || text.includes('ai') || text.includes('automated')) {\n pain_point = 'Automated System Frustration';\n sentiment -= 1;\n }\n\n item.json.pain_point = pain_point;\n item.json.sentiment_score = sentiment;\n item.json.unique_key = pain_point + item.json.text.substring(0, 50).replace(/[^a-zA-Z0-9]/g, '');\n\n return item;\n});"
},
"typeVersion": 2
},
{
"id": "5ac35644-fdd6-42f8-9e6f-86ada4386e80",
"name": "去重、计数和格式化",
"type": "n8n-nodes-base.code",
"position": [
1232,
-96
],
"parameters": {
"jsCode": "const inputItems = $input.all();\n\nif (!Array.isArray(inputItems) || inputItems.length === 0) {\n return []; \n}\n\n\nconst uniqueItems = new Map();\nconst painPointCounts = {};\nconst sourceCounts = {}; \nlet totalSentiment = 0; \n\nfor (const item of inputItems) {\n if (!item.json || !item.json.unique_key) continue; \n \n if (!uniqueItems.has(item.json.unique_key)) {\n uniqueItems.set(item.json.unique_key, item);\n totalSentiment += item.json.sentiment_score;\n }\n \n painPointCounts[item.json.pain_point] = (painPointCounts[item.json.pain_point] || 0) + 1;\n sourceCounts[item.json.source] = (sourceCounts[item.json.source] || 0) + 1; \n}\n\nconst totalUniqueItems = uniqueItems.size;\nconst averageSentiment = totalUniqueItems > 0 ? totalSentiment / totalUniqueItems : 0;\nconst roundedAvgSentiment = Math.round(averageSentiment * 100) / 100;\n\n\nconst summaryString = `\nCurrent Market Intelligence Brief (Total Unique Complaints: ${totalUniqueItems}):\nAverage Sentiment Intensity (Lower is Worse): ${roundedAvgSentiment}\nPain Point Frequencies: ${JSON.stringify(painPointCounts, null, 2)}\nSource Distribution: ${JSON.stringify(sourceCounts, null, 2)}\nTop 5 Unique Complaint Examples: \n${Array.from(uniqueItems.values()).slice(0, 5).map(item => \n `- [${item.json.pain_point}] \"${item.json.title?.substring(0, 60)}...\" (Source: ${item.json.source})`\n).join('\\n')}\n`;\n\n\nconst outputForSheets = [];\nconst painPointKeys = Object.keys(painPointCounts);\n\nif (painPointKeys.length > 0) {\n for (const key of painPointKeys) {\n const latestSourceItem = Array.from(uniqueItems.values()).find(item => item.json.pain_point === key);\n \n const sheetObject = {\n 'Pain_Point': key,\n 'Count': painPointCounts[key],\n 'Average_Sentiment': roundedAvgSentiment, \n 'Latest_Source': latestSourceItem?.json.source || 'N/A', \n 'LLM_SUMMARY_HOLDER': summaryString \n };\n \n outputForSheets.push({ json: sheetObject });\n }\n}\n\n\nreturn outputForSheets;"
},
"typeVersion": 2
},
{
"id": "86de386e-02a5-401c-862b-f034ac530a7e",
"name": "过滤和标记 X",
"type": "n8n-nodes-base.code",
"position": [
176,
800
],
"parameters": {
"jsCode": "const rawTweets = $input.item.json.data || $input.item.json.tweets; \n\nif (!rawTweets || !Array.isArray(rawTweets)) {\n return [];\n}\n\nreturn rawTweets\n .map(tweet => ({\n json: {\n title: tweet.user ? 'Tweet from @' + tweet.user.screen_name : 'Tweet',\n text: tweet.text || '', \n source_url: tweet.url || `https://twitter.com/i/web/status/${tweet.id_str}`,\n source: 'Twitter (External API)',\n full_text: tweet.text || '',\n favorite_count: tweet.favorite_count || 0,\n }\n }));"
},
"typeVersion": 2
},
{
"id": "89ee7c6d-9af1-4406-9e55-1d555be8c69b",
"name": "获取摘要",
"type": "n8n-nodes-base.code",
"position": [
1760,
32
],
"parameters": {
"jsCode": "const previousNodeName = 'Deduplicate, Count, and Format'; \nconst previousNodeOutput = $items(previousNodeName, 0);\n\nif (!previousNodeOutput || previousNodeOutput.length === 0 || !previousNodeOutput[0].json) {\n return [{ json: { summary: \"Error: Could not retrieve summary string from upstream node.\" } }];\n}\n\nconst summary = previousNodeOutput[0].json.LLM_SUMMARY_HOLDER || \"No market intelligence data found for this run.\"; \n\nif (summary.includes(\"No market intelligence data found\")) {\n const cleanSummary = \"The system ran, but no relevant market complaints were found in the data sources. No brief is required.\";\n return [{ json: { summary: cleanSummary } }];\n}\n\nreturn [{ json: { summary: summary } }];"
},
"typeVersion": 2
},
{
"id": "871834d2-510f-4b1c-82bb-3159e123ea68",
"name": "搜索 Reddit",
"type": "n8n-nodes-base.reddit",
"position": [
-48,
256
],
"parameters": {
"limit": 50,
"filters": {},
"operation": "getAll",
"subreddit": "={{ $json.subreddit }}"
},
"credentials": {
"redditOAuth2Api": {
"id": "LQf5gOlHg5jrdJ68",
"name": "Reddit account"
}
},
"typeVersion": 1
},
{
"id": "06e6eebe-a394-4135-99f3-d1d4da03d62a",
"name": "搜索 Google",
"type": "n8n-nodes-serpapi.serpApi",
"position": [
-272,
-368
],
"parameters": {
"q": "HVAC company customer service problems",
"location": "={{ $json[\"Location (where you want the search to originate):\"] }}",
"requestOptions": {},
"additionalFields": {
"hl": "en",
"num": "20"
}
},
"credentials": {
"serpApi": {
"id": "DIWlQVDEFO4o8beb",
"name": "SerpAPI account"
}
},
"typeVersion": 1
},
{
"id": "957b3e0e-4163-4bc4-a72b-538cc03c4158",
"name": "搜索 X",
"type": "n8n-nodes-base.httpRequest",
"position": [
-272,
800
],
"parameters": {
"url": "https://api.twitterapi.io/twitter/tweet/advanced_search",
"options": {},
"sendQuery": true,
"authentication": "genericCredentialType",
"genericAuthType": "httpHeaderAuth",
"queryParameters": {
"parameters": [
{
"name": "query",
"value": "={{ $json[\"Mention X (Twitter) Search Query:\"] }}"
},
{
"name": "queryType",
"value": "Latest"
}
]
}
},
"credentials": {
"httpHeaderAuth": {
"id": "Q7mjBI2AxTsUO2Xj",
"name": "X/Twitter Demo"
}
},
"typeVersion": 4.2
},
{
"id": "03925ec9-70a1-4a8e-94f9-1cd358d119a4",
"name": "过滤和标记 Google",
"type": "n8n-nodes-base.code",
"position": [
176,
-368
],
"parameters": {
"jsCode": "return $input.all()\n .flatMap(item => item.json.organic_results || []) \n .map(result => ({\n json: {\n title: result.title,\n text: result.snippet,\n source_url: result.link,\n source: 'SERP API (Web)',\n full_text: `${result.title} ${result.snippet}`\n }\n }));"
},
"typeVersion": 2
},
{
"id": "06b06b67-849a-4881-ba06-0ea2428789dd",
"name": "高管邮件",
"type": "@n8n/n8n-nodes-langchain.anthropic",
"position": [
1984,
32
],
"parameters": {
"modelId": {
"__rl": true,
"mode": "list",
"value": "claude-haiku-4-5-20251001",
"cachedResultName": "claude-haiku-4-5-20251001"
},
"options": {
"system": "You are a strategic AI product consultant tasked with generating a professional executive summary for a sales team. \n\n***CRITICAL CONSTRAINT: Do NOT use markdown code blocks (e.g., ```html or ```) or any external delimiters. Output ONLY the raw HTML content. Do NOT include <html>, <head>, or <body> tags.***\n\nYour response must strictly adhere to the following structure and formatting rules:\n\n<h1>AI Voice Agent Executive Summary – HVAC Customer Service Market</h1>\n\n<h2>OPPORTUNITY STATEMENT</h2>\n(Provide a two-sentence summary of the biggest market opportunity for the AI Voice Agent based on the data. Use <p> tags for paragraphs.)\n\n<hr>\n\n<h2>TOP 3 PAIN/SELLING POINTS</h2>\n(List the three highest-count pain points. For each point, the pain point must be formatted using a large **<h3> tag** and bold text: <b>1. [Pain Point Name]</b>. Provide a <b>corresponding AI Voice Agent Feature Suggestion</b> that solves that specific pain. Use HTML unordered lists <ul> for clean formatting of feature suggestions.)\n\n<hr>\n\n<h2>SOURCE TRUST ASSESSMENT</h2>\n(Provide a complete analysis of the data's reliability, ensuring the table is fully rendered and includes ALL THREE SOURCES (Reddit, Twitter, SERP API). \n\n***CRITICAL STYLING FIX: The table MUST be wrapped in a <div align=\"center\"> container. The table MUST have width=\"80%\" set as an attribute and the border=\"1\" attribute.***\n\nUse a single HTML table for the analysis. For a clean, single-line border, the table MUST include the following inline style: **style=\"border-collapse: collapse; border: 1px solid black;\"**\n\nThe table header cells (<th>) MUST have the following combined inline style: **style=\"background-color: #f2f2f2; padding: 10px; text-align: center;\"** (This sets the background to light gray, adds padding, and center-aligns the text).\n\nThe table data cells (<td>) MUST have the following inline style: **style=\"padding: 10px;\"** (This adds padding to the regular data cells).\n\nThe table MUST include the following columns:\n1. <b>Data Source</b>\n2. <b>Volume</b> (Must include both **number of mentions** AND **percentage of total**—e.g., 200 mentions (87%))\n3. <b>Reliability Rating</b> (Use text and star emojis)\n4. <b>Context & Limitations</b>\n\nFollow the table with a final key insight summary paragraph.)"
},
"messages": {
"values": [
{
"content": "=DATA TO ANALYZE:\n{{ $json.summary }}"
}
]
}
},
"credentials": {
"anthropicApi": {
"id": "CFRCoeDLcmUNPQT7",
"name": "Anthropic account"
}
},
"typeVersion": 1
},
{
"id": "d2e6ff58-1af5-486c-aa84-52ab8e4f9824",
"name": "发送邮件",
"type": "n8n-nodes-base.gmail",
"position": [
2320,
32
],
"webhookId": "3ac6cf9d-8d4d-4055-86e8-9c82a7d13d41",
"parameters": {
"sendTo": "={{ $('Form').item.json[\"What is your Email?\"] }}",
"message": "={{ $json.content[0].text }}",
"options": {
"appendAttribution": false
},
"subject": "=re: Market briefing for {{ $('Form').item.json[\"What is your Name?\"] }}"
},
"credentials": {
"gmailOAuth2": {
"id": "PJrUDp0UTEVBDOMT",
"name": "Gmail account"
}
},
"typeVersion": 2.1
},
{
"id": "6d8947d0-ca54-4036-bb15-77152ed4bf8b",
"name": "记录搜索详情",
"type": "n8n-nodes-base.googleSheets",
"position": [
1760,
-256
],
"parameters": {
"columns": {
"value": {
"Count": "={{ $json.Count }}",
"Pain_Point": "={{ $json.Pain_Point }}",
"Latest_Source": "={{ $json.Latest_Source }}",
"Execution_Date": "={{ $now.format('dd/LL/yyyy') }}",
"Average_Sentiment": "={{ $json.Average_Sentiment }}",
"Summary_Sample_Example": "={{ $json.LLM_SUMMARY_HOLDER }}"
},
"schema": [
{
"id": "Execution_Date",
"type": "string",
"display": true,
"required": false,
"displayName": "Execution_Date",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Latest_Source",
"type": "string",
"display": true,
"required": false,
"displayName": "Latest_Source",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Pain_Point",
"type": "string",
"display": true,
"required": false,
"displayName": "Pain_Point",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Count",
"type": "string",
"display": true,
"required": false,
"displayName": "Count",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Average_Sentiment",
"type": "string",
"display": true,
"required": false,
"displayName": "Average_Sentiment",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Summary_Sample_Example",
"type": "string",
"display": true,
"required": false,
"displayName": "Summary_Sample_Example",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "append",
"sheetName": {
"__rl": true,
"mode": "list",
"value": "gid=0",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1q1Qw8LqRjn-RsDNkbrUJVw7UWfuqR-VInWYSikvYYnY/edit#gid=0",
"cachedResultName": "Sheet1"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1q1Qw8LqRjn-RsDNkbrUJVw7UWfuqR-VInWYSikvYYnY",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1q1Qw8LqRjn-RsDNkbrUJVw7UWfuqR-VInWYSikvYYnY/edit?usp=drivesdk",
"cachedResultName": "Customer Intent"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "jBABhxE6xPp1vBwL",
"name": "Google Sheets account"
}
},
"typeVersion": 4.7
},
{
"id": "13cbdc50-d991-467c-bcb8-da40f150af79",
"name": "表单",
"type": "n8n-nodes-base.formTrigger",
"position": [
-720,
-80
],
"webhookId": "997fbb25-7733-4286-a5db-14fbce3ea11f",
"parameters": {
"options": {},
"formTitle": "Customer intelligence Briefing",
"formFields": {
"values": [
{
"fieldLabel": "What is your Name?",
"requiredField": true
},
{
"fieldType": "email",
"fieldLabel": "What is your Email?",
"requiredField": true
},
{
"fieldLabel": "Location (where you want the search to originate):",
"placeholder": "United States",
"requiredField": true
},
{
"fieldLabel": "Mention SerpAPI (Google) Search Query:",
"placeholder": "Refer to STICKY NOTE",
"requiredField": true
},
{
"fieldLabel": "Mention X (Twitter) Search Query:",
"placeholder": "Refer to STICKY NOTE",
"requiredField": true
},
{
"fieldLabel": "Mention the #1 subreddit to search:",
"placeholder": "Refer to STICKY NOTE",
"requiredField": true
},
{
"fieldLabel": "Mention the #2 subreddit to search:",
"placeholder": "Refer to STICKY NOTE",
"requiredField": true
}
]
},
"formDescription": "The system will analyze the web, categorize complaints, and deliver a strategic executive summary to the sales team within minutes."
},
"typeVersion": 2.3
},
{
"id": "4b2111ee-09bd-45f7-b8b7-81b37403f4c1",
"name": "便签",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1168,
-128
],
"parameters": {
"width": 624,
"height": 736,
"content": "## 触发器:表单"
},
"typeVersion": 1
},
{
"id": "19ea5f7a-a156-4350-b243-a0b308d3e7e1",
"name": "便签1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-352,
-672
],
"parameters": {
"color": 2,
"width": 704,
"height": 480,
"content": "数据流摄取:SERP API"
},
"typeVersion": 1
},
{
"id": "97c6df85-6b40-4b14-afaa-9bc1a31daff9",
"name": "便签2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-352,
-128
],
"parameters": {
"color": 2,
"width": 704,
"height": 560,
"content": "数据流摄取:Reddit"
},
"typeVersion": 1
},
{
"id": "cbe7c270-a0eb-4107-ac7d-1b0c5a1423c8",
"name": "列表创建器",
"type": "n8n-nodes-base.code",
"position": [
-272,
256
],
"parameters": {
"jsCode": "return [\n { json: { subreddit: $input.first().json[\"Mention the #1 subreddit to search:\"] } },\n { json: { subreddit: $input.first().json[\"Mention the #2 subreddit to search:\"] } },\n];"
},
"typeVersion": 2
},
{
"id": "3fc140dd-d940-46ba-a93c-07f619c5b517",
"name": "便签3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-352,
496
],
"parameters": {
"color": 2,
"width": 704,
"height": 480,
"content": "数据流摄取:X"
},
"typeVersion": 1
},
{
"id": "fb6c3b6d-5c68-4760-8741-ad604f1bbaea",
"name": "便签4",
"type": "n8n-nodes-base.stickyNote",
"position": [
800,
-560
],
"parameters": {
"color": 2,
"width": 624,
"height": 656,
"content": "核心分析引擎"
},
"typeVersion": 1
},
{
"id": "1f4ea8d1-93de-42be-ad0b-eb3b84e91622",
"name": "便签5",
"type": "n8n-nodes-base.stickyNote",
"position": [
1680,
-16
],
"parameters": {
"width": 848,
"height": 688,
"content": "最终交付系统:LLM 简报与分发"
},
"typeVersion": 1
},
{
"id": "c9f47226-c11e-499c-9246-64960bb93a2a",
"name": "便签6",
"type": "n8n-nodes-base.stickyNote",
"position": [
1680,
-560
],
"parameters": {
"width": 848,
"height": 480,
"content": ""
},
"typeVersion": 1
},
{
"id": "80550bfb-1b83-4c0f-8b40-ae1dd688b303",
"name": "便利贴12",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2016,
-560
],
"parameters": {
"color": 5,
"width": 624,
"height": 368,
"content": "日志搜索详情节点"
},
"typeVersion": 1
},
{
"id": "6b8bd8d3-b3b4-47d9-bb3b-60c7beee3321",
"name": "便签7",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1280,
-768
],
"parameters": {
"color": 7,
"width": 3920,
"height": 1856,
"content": "# 你好!"
},
"typeVersion": 1
},
{
"id": "ba1380c4-3024-4e7d-97ad-2326a07814d0",
"name": "便签8",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2016,
-128
],
"parameters": {
"width": 624,
"height": 736,
"content": ""
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "bc1a0b84-4826-47a8-a194-343832b3dfb5",
"connections": {
"Form": {
"main": [
[
{
"node": "Search Google",
"type": "main",
"index": 0
},
{
"node": "List Creator",
"type": "main",
"index": 0
},
{
"node": "Search X",
"type": "main",
"index": 0
}
]
]
},
"Merge": {
"main": [
[
{
"node": "Categorization & Sentiment",
"type": "main",
"index": 0
}
]
]
},
"Search X": {
"main": [
[
{
"node": "Filter & Label X",
"type": "main",
"index": 0
}
]
]
},
"Get Summary": {
"main": [
[
{
"node": "Executive Email",
"type": "main",
"index": 0
}
]
]
},
"List Creator": {
"main": [
[
{
"node": "Search Reddit",
"type": "main",
"index": 0
}
]
]
},
"Search Google": {
"main": [
[
{
"node": "Filter & Label Google",
"type": "main",
"index": 0
}
]
]
},
"Search Reddit": {
"main": [
[
{
"node": "Filter & Label Reddit",
"type": "main",
"index": 0
}
]
]
},
"Executive Email": {
"main": [
[
{
"node": "Send Email",
"type": "main",
"index": 0
}
]
]
},
"Filter & Label X": {
"main": [
[
{
"node": "Merge",
"type": "main",
"index": 2
}
]
]
},
"Log Search Details": {
"main": [
[]
]
},
"Filter & Label Google": {
"main": [
[
{
"node": "Merge",
"type": "main",
"index": 0
}
]
]
},
"Filter & Label Reddit": {
"main": [
[
{
"node": "Merge",
"type": "main",
"index": 1
}
]
]
},
"Categorization & Sentiment": {
"main": [
[
{
"node": "Deduplicate, Count, and Format",
"type": "main",
"index": 0
}
]
]
},
"Deduplicate, Count, and Format": {
"main": [
[
{
"node": "Get Summary",
"type": "main",
"index": 0
},
{
"node": "Log Search Details",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
高级 - 市场调研, AI 摘要总结
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
选题捕手模板
使用Gemini分析Reddit、YouTube和X生成内容策略报告
If
Set
Code
+14
34 节点Sheryl
市场调研
多站点产品价格监控:Claude-Sonnet、Google Sheets和Telegram提醒
使用Firecrawl、Claude-Sonnet AI和Telegram提醒的电商价格监控系统
Code
Wait
Merge
+10
19 节点Cheng Siong Chin
市场调研
源发现 - 自动搜索更及时的信息源
多平台源发现系统,集成 SerpAPI、DuckDuckGo、GitHub、Reddit 和 Bluesky
Set
Code
Limit
+18
68 节点Hybroht
市场调研
使用 Bright Data API 和 AI 抓取分析 Google 广告并发送邮件报告
使用 Bright Data API 和 AI 抓取分析 Google 广告并发送邮件报告
Set
Code
Gmail
+15
45 节点Zacharia Kimotho
市场调研
潜在客户开发与邮件工作流
使用Google Maps、SendGrid和AI自动化B2B潜在客户开发与邮件营销
If
Set
Code
+21
141 节点Ezema Kingsley Chibuzo
潜在客户开发
我的冷邮件生成器
使用Anthropic、GPT-4和谷歌表格生成个性化冷邮件
If
Set
Code
+10
24 节点Bhuvanesh R
客户培育
工作流信息
难度等级
高级
节点数量25
分类2
节点类型10
作者
Bhuvanesh R
@bhuvaneshI partner with businesses to design AI voice agents and automation systems. Let's connect on LinkedIn to discuss your AI integration and automation needs.
外部链接
在 n8n.io 查看 →
分享此工作流