8
n8n 中文网amn8n.com

在n8n中使用任意LangChain模块(通过LangChain代码节点)

中级

这是一个AI领域的自动化工作流,包含 6 个节点。主要使用 Set, ManualTrigger, Code, LmChatOpenAi 等节点,结合人工智能技术实现智能自动化。 在n8n中使用任意LangChain模块(通过LangChain代码节点)

前置要求
  • OpenAI API Key
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
  "meta": {
    "instanceId": "408f9fb9940c3cb18ffdef0e0150fe342d6e655c3a9fac21f0f644e8bedabcd9",
    "templateCredsSetupCompleted": true
  },
  "nodes": [
    {
      "id": "b7e2de27-e52c-46d1-aaa9-a67c11c48a8f",
      "name": "## 试试看!",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -420,
        -60
      ],
      "parameters": {
        "width": 328.41313484548044,
        "height": 211.30313955500145,
        "content": "执行前请将 `YOUR_API_KEY` 替换为 searchapi.io 的 API 密钥"
      },
      "typeVersion": 1
    },
    {
      "id": "fd2ac655-73fd-434a-bba4-e460af8dfa8a",
      "name": "当点击\"执行工作流\"时",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -820,
        20
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "e1bd87f7-283b-496d-910d-b92d1cb19237",
      "name": "便签",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1140,
        -20
      ],
      "parameters": {
        "color": 7,
        "height": 220.82906011310624,
        "content": "## 关于"
      },
      "typeVersion": 1
    },
    {
      "id": "a43bb1c5-dd90-4331-930c-128ef0ecb38a",
      "name": "LangChain 代码",
      "type": "@n8n/n8n-nodes-langchain.code",
      "position": [
        -380,
        20
      ],
      "parameters": {
        "code": {
          "execute": {
            "code": "// IMPORTANT: add in your API key for searchapi.io below\nconst searchApiKey = \"<YOUR API KEY>\"\n\nconst { loadSummarizationChain } = require(\"langchain/chains\");\nconst { SearchApiLoader } = require(\"@n8n/n8n-nodes-langchain/node_modules/@langchain/community/document_loaders/web/searchapi.cjs\");\nconst { PromptTemplate } = require(\"@langchain/core/prompts\");\nconst { TokenTextSplitter } = require(\"langchain/text_splitter\");\nconst loader = new SearchApiLoader({\n  engine: \"youtube_transcripts\",\n  video_id: $input.item.json.videoId,\n  apiKey: searchApiKey,\n});\n\nif (searchApiKey == \"<YOUR API KEY>\") {\n  throw new Error(\"Please add your API key for searchapi.io to this node\")\n}\n\nconst docs = await loader.load();\n\nconst splitter = new TokenTextSplitter({\n  chunkSize: 10000,\n  chunkOverlap: 250,\n});\n\nconst docsSummary = await splitter.splitDocuments(docs);\n\nconst llmSummary = await this.getInputConnectionData('ai_languageModel', 0);\n\nconst summaryTemplate = `\nYou are an expert in summarizing YouTube videos.\nYour goal is to create a summary of a podcast.\nBelow you find the transcript of a podcast:\n--------\n{text}\n--------\n\nThe transcript of the podcast will also be used as the basis for a question and answer bot.\nProvide some examples questions and answers that could be asked about the podcast. Make these questions very specific.\n\nTotal output will be a summary of the video and a list of example questions the user could ask of the video.\n\nSUMMARY AND QUESTIONS:\n`;\n\nconst SUMMARY_PROMPT = PromptTemplate.fromTemplate(summaryTemplate);\n\nconst summaryRefineTemplate = `\nYou are an expert in summarizing YouTube videos.\nYour goal is to create a summary of a podcast.\nWe have provided an existing summary up to a certain point: {existing_answer}\n\nBelow you find the transcript of a podcast:\n--------\n{text}\n--------\n\nGiven the new context, refine the summary and example questions.\nThe transcript of the podcast will also be used as the basis for a question and answer bot.\nProvide some examples questions and answers that could be asked about the podcast. Make\nthese questions very specific.\nIf the context isn't useful, return the original summary and questions.\nTotal output will be a summary of the video and a list of example questions the user could ask of the video.\n\nSUMMARY AND QUESTIONS:\n`;\n\nconst SUMMARY_REFINE_PROMPT = PromptTemplate.fromTemplate(\n  summaryRefineTemplate\n);\n\nconst summarizeChain = loadSummarizationChain(llmSummary, {\n  type: \"refine\",\n  verbose: true,\n  questionPrompt: SUMMARY_PROMPT,\n  refinePrompt: SUMMARY_REFINE_PROMPT,\n});\n\nconst summary = await summarizeChain.run(docsSummary);\n\nreturn [{json: { summary } } ];"
          }
        },
        "inputs": {
          "input": [
            {
              "type": "main",
              "required": true,
              "maxConnections": 1
            },
            {
              "type": "ai_languageModel",
              "required": true,
              "maxConnections": 1
            }
          ]
        },
        "outputs": {
          "output": [
            {
              "type": "main"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "a36440c5-402e-44e6-819c-2a19dc9e3e1e",
      "name": "设置 YouTube 视频 ID",
      "type": "n8n-nodes-base.set",
      "position": [
        -600,
        20
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "c2dc2944-a7c7-44c3-a805-27a55baa452a",
              "name": "videoId",
              "type": "string",
              "value": "OsMVtuuwOXc"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "02386530-9aef-4732-9972-5624b78431a6",
      "name": "OpenAI 聊天模型",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        -340,
        220
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    }
  ],
  "pinData": {},
  "connections": {
    "OpenAI Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "LangChain Code",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Set YouTube video ID": {
      "main": [
        [
          {
            "node": "LangChain Code",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "When clicking \"Execute Workflow\"": {
      "main": [
        [
          {
            "node": "Set YouTube video ID",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
常见问题

如何使用这个工作流?

复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。

这个工作流适合什么场景?

中级 - 人工智能

需要付费吗?

本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。

工作流信息
难度等级
中级
节点数量6
分类1
节点类型5
难度说明

适合有一定经验的用户,包含 6-15 个节点的中等复杂度工作流

外部链接
在 n8n.io 查看

分享此工作流