8
n8n 中文网amn8n.com

[2/2] KNN分类器(土地数据集)

高级

这是一个AI领域的自动化工作流,包含 18 个节点。主要使用 If, Set, Code, HttpRequest, ExecuteWorkflowTrigger 等节点,结合人工智能技术实现智能自动化。 KNN(图像)分类工具 [2/2 KNN]

前置要求
  • 可能需要目标 API 的认证凭证
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
  "id": "itzURpN5wbUNOXOw",
  "meta": {
    "instanceId": "205b3bc06c96f2dc835b4f00e1cbf9a937a74eeb3b47c99d0c30b0586dbf85aa"
  },
  "name": "[2/2] KNN 分类器(土地数据集)",
  "tags": [
    {
      "id": "QN7etptCmdcGIpkS",
      "name": "classifier",
      "createdAt": "2024-12-08T22:08:15.968Z",
      "updatedAt": "2024-12-09T19:25:04.113Z"
    }
  ],
  "nodes": [
    {
      "id": "33373ccb-164e-431c-8a9a-d68668fc70be",
      "name": "嵌入图像",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -140,
        -240
      ],
      "parameters": {
        "url": "https://api.voyageai.com/v1/multimodalembeddings",
        "method": "POST",
        "options": {},
        "jsonBody": "={{\n{\n  \"inputs\": [\n    {\n      \"content\": [\n        {\n          \"type\": \"image_url\",\n          \"image_url\": $json.imageURL\n        }\n      ]\n    }\n  ],\n  \"model\": \"voyage-multimodal-3\",\n  \"input_type\": \"document\"\n}\n}}",
        "sendBody": true,
        "specifyBody": "json",
        "authentication": "genericCredentialType",
        "genericAuthType": "httpHeaderAuth"
      },
      "credentials": {
        "httpHeaderAuth": {
          "id": "Vb0RNVDnIHmgnZOP",
          "name": "Voyage API"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "58adecfa-45c7-4928-b850-053ea6f3b1c5",
      "name": "查询 Qdrant",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        440,
        -240
      ],
      "parameters": {
        "url": "={{ $json.qdrantCloudURL }}/collections/{{ $json.collectionName }}/points/query",
        "method": "POST",
        "options": {},
        "jsonBody": "={{\n{\n  \"query\": $json.ImageEmbedding,\n  \"using\": \"voyage\",\n  \"limit\": $json.limitKNN,\n  \"with_payload\": true\n}\n}}",
        "sendBody": true,
        "specifyBody": "json",
        "authentication": "predefinedCredentialType",
        "nodeCredentialType": "qdrantApi"
      },
      "credentials": {
        "qdrantApi": {
          "id": "it3j3hP9FICqhgX6",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "258026b7-2dda-4165-bfe1-c4163b9caf78",
      "name": "多数投票",
      "type": "n8n-nodes-base.code",
      "position": [
        840,
        -240
      ],
      "parameters": {
        "language": "python",
        "pythonCode": "from collections import Counter\n\ninput_json = _input.all()[0]\npoints = input_json['json']['result']['points']\nmajority_vote_two_most_common = Counter([point[\"payload\"][\"landscape_name\"] for point in points]).most_common(2)\n\nreturn [{\n    \"json\": {\n        \"result\": majority_vote_two_most_common    \n    }\n}]\n"
      },
      "typeVersion": 2
    },
    {
      "id": "e83e7a0c-cb36-46d0-8908-86ee1bddf638",
      "name": "增加 limitKNN",
      "type": "n8n-nodes-base.set",
      "position": [
        1240,
        -240
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "0b5d257b-1b27-48bc-bec2-78649bc844cc",
              "name": "limitKNN",
              "type": "number",
              "value": "={{ $('Propagate loop variables').item.json.limitKNN + 5}}"
            },
            {
              "id": "afee4bb3-f78b-4355-945d-3776e33337a4",
              "name": "ImageEmbedding",
              "type": "array",
              "value": "={{ $('Qdrant variables + embedding + KNN neigbours').first().json.ImageEmbedding }}"
            },
            {
              "id": "701ed7ba-d112-4699-a611-c0c134757a6c",
              "name": "qdrantCloudURL",
              "type": "string",
              "value": "={{ $('Qdrant variables + embedding + KNN neigbours').first().json.qdrantCloudURL }}"
            },
            {
              "id": "f5612f78-e7d8-4124-9c3a-27bd5870c9bf",
              "name": "collectionName",
              "type": "string",
              "value": "={{ $('Qdrant variables + embedding + KNN neigbours').first().json.collectionName }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "8edbff53-cba6-4491-9d5e-bac7ad6db418",
      "name": "传播循环变量",
      "type": "n8n-nodes-base.set",
      "position": [
        640,
        -240
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "880838bf-2be2-4f5f-9417-974b3cbee163",
              "name": "=limitKNN",
              "type": "number",
              "value": "={{ $json.result.points.length}}"
            },
            {
              "id": "5fff2bea-f644-4fd9-ad04-afbecd19a5bc",
              "name": "result",
              "type": "object",
              "value": "={{ $json.result }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "6fad4cc0-f02c-429d-aa4e-0d69ebab9d65",
      "name": "图像测试 URL",
      "type": "n8n-nodes-base.set",
      "position": [
        -320,
        -240
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "46ceba40-fb25-450c-8550-d43d8b8aa94c",
              "name": "imageURL",
              "type": "string",
              "value": "={{ $json.query.imageURL }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "f02e79e2-32c8-4af0-8bf9-281119b23cc0",
      "name": "返回类别",
      "type": "n8n-nodes-base.set",
      "position": [
        1240,
        0
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "bd8ca541-8758-4551-b667-1de373231364",
              "name": "class",
              "type": "string",
              "value": "={{ $json.result[0][0] }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "83ca90fb-d5d5-45f4-8957-4363a4baf8ed",
      "name": "检查平局",
      "type": "n8n-nodes-base.if",
      "position": [
        1040,
        -240
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "980663f6-9d7d-4e88-87b9-02030882472c",
              "operator": {
                "type": "number",
                "operation": "gt"
              },
              "leftValue": "={{ $json.result.length }}",
              "rightValue": 1
            },
            {
              "id": "9f46fdeb-0f89-4010-99af-624c1c429d6a",
              "operator": {
                "type": "number",
                "operation": "equals"
              },
              "leftValue": "={{ $json.result[0][1] }}",
              "rightValue": "={{ $json.result[1][1] }}"
            },
            {
              "id": "c59bc4fe-6821-4639-8595-fdaf4194c1e1",
              "operator": {
                "type": "number",
                "operation": "lte"
              },
              "leftValue": "={{ $('Propagate loop variables').item.json.limitKNN }}",
              "rightValue": 100
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "847ced21-4cfd-45d8-98fa-b578adc054d6",
      "name": "Qdrant 变量 + 嵌入 + KNN 邻居",
      "type": "n8n-nodes-base.set",
      "position": [
        120,
        -240
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "de66070d-5e74-414e-8af7-d094cbc26f62",
              "name": "ImageEmbedding",
              "type": "array",
              "value": "={{ $json.data[0].embedding }}"
            },
            {
              "id": "58b7384d-fd0c-44aa-9f8e-0306a99be431",
              "name": "qdrantCloudURL",
              "type": "string",
              "value": "=https://152bc6e2-832a-415c-a1aa-fb529f8baf8d.eu-central-1-0.aws.cloud.qdrant.io"
            },
            {
              "id": "e34c4d88-b102-43cc-a09e-e0553f2da23a",
              "name": "collectionName",
              "type": "string",
              "value": "=land-use"
            },
            {
              "id": "db37e18d-340b-4624-84f6-df993af866d6",
              "name": "limitKNN",
              "type": "number",
              "value": "=10"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "d1bc4edc-37d2-43ac-8d8b-560453e68d1f",
      "name": "便签",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -940,
        -120
      ],
      "parameters": {
        "color": 6,
        "width": 320,
        "height": 540,
        "content": "这里我们对现有类型的卫星图像土地类型进行分类:"
      },
      "typeVersion": 1
    },
    {
      "id": "13560a31-3c72-43b8-9635-3f9ca11f23c9",
      "name": "便签1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -520,
        -460
      ],
      "parameters": {
        "color": 6,
        "content": "我在整个 `测试` 集上测试了这个 KNN 分类器(它不是集合的一部分,只有 `验证` + `训练` 部分)。在 `测试` 集上的分类准确率为 **93.24%**,无需微调,无需度量学习。"
      },
      "typeVersion": 1
    },
    {
      "id": "8c9dcbcb-a1ad-430f-b7dd-e19b5645b0f6",
      "name": "执行工作流触发器",
      "type": "n8n-nodes-base.executeWorkflowTrigger",
      "position": [
        -520,
        -240
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "b36fb270-2101-45e9-bb5c-06c4e07b769c",
      "name": "便签 2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1080,
        -520
      ],
      "parameters": {
        "width": 460,
        "height": 380,
        "content": "## KNN 分类工作流工具"
      },
      "typeVersion": 1
    },
    {
      "id": "51ece7fc-fd85-4d20-ae26-4df2d3893251",
      "name": "便签 3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        120,
        -40
      ],
      "parameters": {
        "height": 200,
        "content": "变量定义了另一个带有景观的 Qdrant 集合(与作物集合类似上传,别忘了用您的数据切换它)+ 邻居数量 **limitKNN**,我们将在数据库中使用它来对输入图像进行分类。"
      },
      "typeVersion": 1
    },
    {
      "id": "7aad5904-eb0b-4389-9d47-cc91780737ba",
      "name": "便签 4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -180,
        -60
      ],
      "parameters": {
        "height": 80,
        "content": "与异常检测工具类似,我们使用 Voyage 模型嵌入输入图像"
      },
      "typeVersion": 1
    },
    {
      "id": "d3702707-ee4a-481f-82ca-d9386f5b7c8a",
      "name": "便签 5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        440,
        -500
      ],
      "parameters": {
        "width": 740,
        "height": 200,
        "content": "## 平局循环"
      },
      "typeVersion": 1
    },
    {
      "id": "d26911bb-0442-4adc-8511-7cec2d232393",
      "name": "便签6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1240,
        160
      ],
      "parameters": {
        "height": 80,
        "content": "Here, we extract the name of the input image class decided by the Majority Vote\n"
      },
      "typeVersion": 1
    },
    {
      "id": "84ffc859-1d5c-4063-9051-3587f30a0017",
      "name": "便签10",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -520,
        80
      ],
      "parameters": {
        "color": 4,
        "width": 540,
        "height": 260,
        "content": "### KNN (k nearest neighbours) classification\n1. The first pipeline is uploading (lands) dataset to Qdrant's collection.\n2. **This is the KNN classifier tool, which takes any image as input and classifies it based on queries to the Qdrant (lands) collection.**\n\n### To recreate it\nYou'll have to upload [lands](https://www.kaggle.com/datasets/apollo2506/landuse-scene-classification) dataset from Kaggle to your own Google Storage bucket, and re-create APIs/connections to [Qdrant Cloud](https://qdrant.tech/documentation/quickstart-cloud/) (you can use **Free Tier** cluster), Voyage AI API & Google Cloud Storage\n\n**In general, pipelines are adaptable to any dataset of images**\n"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {
    "Execute Workflow Trigger": [
      {
        "json": {
          "query": {
            "imageURL": "https://storage.googleapis.com/n8n-qdrant-demo/land-use/images_train_test_val/test/buildings/buildings_000323.png"
          }
        }
      }
    ]
  },
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "c8cfe732-fd78-4985-9540-ed8cb2de7ef3",
  "connections": {
    "Check tie": {
      "main": [
        [
          {
            "node": "Increase limitKNN",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "Return class",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Embed image": {
      "main": [
        [
          {
            "node": "Qdrant variables + embedding + KNN neigbours",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Query Qdrant": {
      "main": [
        [
          {
            "node": "Propagate loop variables",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Majority Vote": {
      "main": [
        [
          {
            "node": "Check tie",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Image Test URL": {
      "main": [
        [
          {
            "node": "Embed image",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Increase limitKNN": {
      "main": [
        [
          {
            "node": "Query Qdrant",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Execute Workflow Trigger": {
      "main": [
        [
          {
            "node": "Image Test URL",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Propagate loop variables": {
      "main": [
        [
          {
            "node": "Majority Vote",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Qdrant variables + embedding + KNN neigbours": {
      "main": [
        [
          {
            "node": "Query Qdrant",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
常见问题

如何使用这个工作流?

复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。

这个工作流适合什么场景?

高级 - 人工智能

需要付费吗?

本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。

工作流信息
难度等级
高级
节点数量18
分类1
节点类型6
难度说明

适合高级用户,包含 16+ 个节点的复杂工作流

作者

Qdrant DevRel, ML/NLP/math nerd with yapping skills

外部链接
在 n8n.io 查看

分享此工作流