8
n8n 中文网amn8n.com

表格RAG查询

高级

这是一个Engineering, Product领域的自动化工作流,包含 23 个节点。主要使用 If, Set, Code, Postgres, GoogleSheets 等节点。 使用PostgreSQL通过AI代理查询Google Sheets/CSV数据

前置要求
  • PostgreSQL 数据库连接信息
  • Google Sheets API 凭证
  • Google Drive API 凭证
  • Google Gemini API Key
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
  "id": "7gRbzEzCuOzQKn4M",
  "meta": {
    "instanceId": "edc0464b1050024ebda3e16fceea795e4fdf67b1f61187c4f2f3a72397278df0",
    "templateCredsSetupCompleted": true
  },
  "name": "SHEETS RAG",
  "tags": [],
  "nodes": [
    {
      "id": "a073154f-53ad-45e2-9937-d0a4196c7838",
      "name": "创建表查询",
      "type": "n8n-nodes-base.code",
      "position": [
        1280,
        2360
      ],
      "parameters": {
        "jsCode": "// Helper function to check if a string is in MM/DD/YYYY format\nfunction isDateString(value) {\n  const dateRegex = /^\\d{2}\\/\\d{2}\\/\\d{4}$/;\n  if (typeof value !== 'string') return false;\n  if (!dateRegex.test(value)) return false;\n  const [month, day, year] = value.split('/').map(Number);\n  const date = new Date(year, month - 1, day);\n  return !isNaN(date.getTime());\n}\n\nconst tableName = `ai_table_${$('change_this').first().json.sheet_name}`;\nconst rows = $('fetch sheet data').all();\nconst allColumns = new Set();\n\n// Collect column names dynamically\nrows.forEach(row => {\n  Object.keys(row.json).forEach(col => allColumns.add(col));\n});\n\n// Ensure \"ai_table_identifier\" is always the first column\nconst originalColumns = [\"ai_table_identifier\", ...Array.from(allColumns)];\n\n// Function to detect currency type (unchanged)\nfunction detectCurrency(values) {\n  const currencySymbols = {\n    '₹': 'INR', '$': 'USD', '€': 'EUR', '£': 'GBP', '¥': 'JPY',\n    '₩': 'KRW', '฿': 'THB', 'zł': 'PLN', 'kr': 'SEK', 'R$': 'BRL',\n    'C$': 'CAD', 'A$': 'AUD'\n  };\n\n  let detectedCurrency = null;\n  for (const value of values) {\n    if (typeof value === 'string' && value.trim() !== '') {\n      for (const [symbol, code] of Object.entries(currencySymbols)) {\n        if (value.trim().startsWith(symbol)) {\n          detectedCurrency = code;\n          break;\n        }\n      }\n    }\n  }\n  return detectedCurrency;\n}\n\n// Function to generate consistent column names\nfunction generateColumnName(originalName, typeInfo) {\n  if (typeInfo.isCurrency) {\n    return `${originalName}_${typeInfo.currencyCode.toLowerCase()}`;\n  }\n  return originalName;\n}\n\n// Infer column types and transform names\nconst columnMapping = {};\noriginalColumns.forEach(col => {\n  let typeInfo = { type: \"TEXT\" };\n\n  if (col !== \"ai_table_identifier\") {\n    const sampleValues = rows\n      .map(row => row.json[col])\n      .filter(value => value !== undefined && value !== null);\n\n    // Check for currency first\n    const currencyCode = detectCurrency(sampleValues);\n    if (currencyCode) {\n      typeInfo = { type: \"DECIMAL(15,2)\", isCurrency: true, currencyCode };\n    }\n    // If all sample values match MM/DD/YYYY, treat the column as a date\n    else if (sampleValues.length > 0 && sampleValues.every(val => isDateString(val))) {\n      typeInfo = { type: \"TIMESTAMP\" };\n    }\n  }\n\n  const newColumnName = generateColumnName(col, typeInfo);\n  columnMapping[col] = { newName: newColumnName, typeInfo };\n});\n\n// Final column names\nconst mappedColumns = originalColumns.map(col => columnMapping[col]?.newName || col);\n\n// Define SQL columns – note that for simplicity, this example still uses TEXT for non-special types,\n// but you can adjust it so that TIMESTAMP columns are created with a TIMESTAMP type.\nconst columnDefinitions = [`\"ai_table_identifier\" UUID PRIMARY KEY DEFAULT gen_random_uuid()`]\n  .concat(mappedColumns.slice(1).map(col => {\n    // If the column was inferred as TIMESTAMP, use that type in the CREATE TABLE statement.\n    const originalCol = Object.keys(columnMapping).find(key => columnMapping[key].newName === col);\n    const inferredType = columnMapping[originalCol]?.typeInfo?.type;\n    return `\"${col}\" ${inferredType === \"TIMESTAMP\" ? \"TIMESTAMP\" : \"TEXT\"}`;\n  }))\n  .join(\", \");\n\nconst createTableQuery = `CREATE TABLE IF NOT EXISTS ${tableName} (${columnDefinitions});`;\n\nreturn [{ \n  query: createTableQuery,\n  columnMapping: columnMapping \n}];\n"
      },
      "typeVersion": 2
    },
    {
      "id": "2beb72c4-dab4-4058-b587-545a8ce8b86d",
      "name": "创建插入查询",
      "type": "n8n-nodes-base.code",
      "position": [
        1660,
        2360
      ],
      "parameters": {
        "jsCode": "const tableName = `ai_table_${$('change_this').first().json.sheet_name}`;\nconst rows = $('fetch sheet data').all();\nconst allColumns = new Set();\n\n// Get column mapping from previous node\nconst columnMapping = $('create table query').first().json.columnMapping || {};\n\n// Collect column names dynamically\nrows.forEach(row => {\n  Object.keys(row.json).forEach(col => allColumns.add(col));\n});\n\nconst originalColumns = Array.from(allColumns);\nconst mappedColumns = originalColumns.map(col => \n  columnMapping[col] ? columnMapping[col].newName : col\n);\n\n// Helper function to check if a string is a valid timestamp\nfunction isValidTimestamp(value) {\n  const date = new Date(value);\n  return !isNaN(date.getTime());\n}\n\n// Helper to detect currency symbol (unchanged)\nfunction getCurrencySymbol(value) {\n  if (typeof value !== 'string') return null;\n  \n  const currencySymbols = ['₹', '$', '€', '£', '¥', '₩', '฿', 'zł', 'kr', 'R$', 'C$', 'A$'];\n  for (const symbol of currencySymbols) {\n    if (value.trim().startsWith(symbol)) {\n      return symbol;\n    }\n  }\n  return null;\n}\n\n// Helper to normalize currency values (unchanged)\nfunction normalizeCurrencyValue(value, currencySymbol) {\n  if (typeof value !== 'string') return null;\n  if (!currencySymbol) return value;\n  \n  const numericPart = value.replace(currencySymbol, '').replace(/,/g, '');\n  return !isNaN(parseFloat(numericPart)) ? parseFloat(numericPart) : null;\n}\n\n// Helper to normalize percentage values (unchanged)\nfunction normalizePercentageValue(value) {\n  if (typeof value !== 'string') return value;\n  if (!value.trim().endsWith('%')) return value;\n  \n  const numericPart = value.replace('%', '');\n  return !isNaN(parseFloat(numericPart)) ? parseFloat(numericPart) / 100 : null;\n}\n\n// Function to parse MM/DD/YYYY strings into ISO format\nfunction parseDateString(value) {\n  const dateRegex = /^\\d{2}\\/\\d{2}\\/\\d{4}$/;\n  if (typeof value === 'string' && dateRegex.test(value)) {\n    const [month, day, year] = value.split('/').map(Number);\n    const date = new Date(year, month - 1, day);\n    return !isNaN(date.getTime()) ? date.toISOString() : null;\n  }\n  return value;\n}\n\n// Format rows properly based on column mappings and types\nconst formattedRows = rows.map(row => {\n  const formattedRow = {};\n\n  originalColumns.forEach((col, index) => {\n    const mappedCol = mappedColumns[index];\n    let value = row.json[col];\n    const typeInfo = columnMapping[col]?.typeInfo || { type: \"TEXT\" };\n\n    if (value === \"\" || value === null || value === undefined) {\n      value = null;\n    } \n    else if (typeInfo.isCurrency) {\n      const symbol = getCurrencySymbol(value);\n      if (symbol) {\n        value = normalizeCurrencyValue(value, symbol);\n      } else {\n        value = null;\n      }\n    }\n    else if (typeInfo.isPercentage) {\n      if (typeof value === 'string' && value.trim().endsWith('%')) {\n        value = normalizePercentageValue(value);\n      } else {\n        value = !isNaN(parseFloat(value)) ? parseFloat(value) / 100 : null;\n      }\n    }\n    else if (typeInfo.type === \"DECIMAL(15,2)\" || typeInfo.type === \"INTEGER\") {\n      if (typeof value === 'string') {\n        const cleanedValue = value.replace(/,/g, '');\n        value = !isNaN(parseFloat(cleanedValue)) ? parseFloat(cleanedValue) : null;\n      } else if (typeof value === 'number') {\n        value = parseFloat(value);\n      } else {\n        value = null;\n      }\n    } \n    else if (typeInfo.type === \"BOOLEAN\") {\n      if (typeof value === 'string') {\n        const lowercased = value.toString().toLowerCase();\n        value = lowercased === \"true\" ? true : \n                lowercased === \"false\" ? false : null;\n      } else {\n        value = Boolean(value);\n      }\n    } \n    else if (typeInfo.type === \"TIMESTAMP\") {\n      // Check if the value is in MM/DD/YYYY format and parse it accordingly.\n      if (/^\\d{2}\\/\\d{2}\\/\\d{4}$/.test(value)) {\n        value = parseDateString(value);\n      } else if (isValidTimestamp(value)) {\n        value = new Date(value).toISOString();\n      } else {\n        value = null;\n      }\n    }\n    else if (typeInfo.type === \"TEXT\") {\n      value = value !== null && value !== undefined ? String(value) : null;\n    }\n\n    formattedRow[mappedCol] = value;\n  });\n\n  return formattedRow;\n});\n\n// Generate SQL placeholders dynamically\nconst valuePlaceholders = formattedRows.map((_, rowIndex) =>\n  `(${mappedColumns.map((_, colIndex) => `$${rowIndex * mappedColumns.length + colIndex + 1}`).join(\", \")})`\n).join(\", \");\n\n// Build the insert query string\nconst insertQuery = `INSERT INTO ${tableName} (${mappedColumns.map(col => `\"${col}\"`).join(\", \")}) VALUES ${valuePlaceholders};`;\n\n// Flatten parameter values for PostgreSQL query\nconst parameters = formattedRows.flatMap(row => mappedColumns.map(col => row[col]));\n\nreturn [\n  {\n    query: insertQuery,\n    parameters: parameters\n  }\n];\n"
      },
      "typeVersion": 2
    },
    {
      "id": "ba19c350-ffb7-4fe1-9568-2a619c914434",
      "name": "Google Drive 触发器",
      "type": "n8n-nodes-base.googleDriveTrigger",
      "position": [
        600,
        2060
      ],
      "parameters": {
        "pollTimes": {
          "item": [
            {}
          ]
        },
        "triggerOn": "specificFile",
        "fileToWatch": {
          "__rl": true,
          "mode": "list",
          "value": "1yGx4ODHYYtPV1WZFAtPcyxGT2brcXM6pl0KJhIM1f_c",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1yGx4ODHYYtPV1WZFAtPcyxGT2brcXM6pl0KJhIM1f_c/edit?usp=drivesdk",
          "cachedResultName": "Spreadsheet"
        }
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "zOt0lyWOZz1UlS67",
          "name": "Google Drive account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "dd2108fe-0cfe-453c-ac03-c0c5b10397e6",
      "name": "execute_query_tool",
      "type": "@n8n/n8n-nodes-langchain.toolWorkflow",
      "position": [
        1340,
        1720
      ],
      "parameters": {
        "name": "query_executer",
        "schemaType": "manual",
        "workflowId": {
          "__rl": true,
          "mode": "list",
          "value": "oPWJZynrMME45ks4",
          "cachedResultName": "query_executer"
        },
        "description": "调用此工具执行查询。请记住,它应采用 postgreSQL 查询结构。",
        "inputSchema": "{\n\"type\": \"object\",\n\"properties\": {\n\t\"sql\": {\n\t\t\"type\": \"string\",\n\t\t\"description\": \"A SQL query based on the users question and database schema.\"\n\t\t}\n\t}\n}",
        "specifyInputSchema": true
      },
      "typeVersion": 1.2
    },
    {
      "id": "f2c110db-1097-4b96-830d-f028e08b6713",
      "name": "Google Gemini 聊天模型",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        880,
        1680
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "Kr5lNqvdmtB0Ybyo",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "2460801c-5b64-41b3-93f7-4f2fbffabfd6",
      "name": "get_postgres_schema",
      "type": "@n8n/n8n-nodes-langchain.toolWorkflow",
      "position": [
        1160,
        1720
      ],
      "parameters": {
        "name": "get_postgres_schema",
        "workflowId": {
          "__rl": true,
          "mode": "list",
          "value": "iNLPk34SeRGHaeMD",
          "cachedResultName": "get database schema"
        },
        "description": "调用此工具检索数据库内所有表的模式。将检索到一个字符串,其中包含表名及其列,每个表用 \\n\\n 分隔。",
        "workflowInputs": {
          "value": {},
          "schema": [],
          "mappingMode": "defineBelow",
          "matchingColumns": [],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        }
      },
      "typeVersion": 2
    },
    {
      "id": "4b43ff94-df0d-40f1-9f51-cf488e33ff68",
      "name": "change_this",
      "type": "n8n-nodes-base.set",
      "position": [
        800,
        2060
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "908ed843-f848-4290-9cdb-f195d2189d7c",
              "name": "table_url",
              "type": "string",
              "value": "https://docs.google.com/spreadsheets/d/1yGx4ODHYYtPV1WZFAtPcyxGT2brcXM6pl0KJhIM1f_c/edit?gid=0#gid=0"
            },
            {
              "id": "50f8afaf-0a6c-43ee-9157-79408fe3617a",
              "name": "sheet_name",
              "type": "string",
              "value": "product_list"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "a27a47ff-9328-4eef-99e8-280452cff189",
      "name": "不在数据库中",
      "type": "n8n-nodes-base.if",
      "position": [
        1380,
        2060
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "619ce84c-0a50-4f88-8e55-0ce529aea1fc",
              "operator": {
                "type": "boolean",
                "operation": "false",
                "singleValue": true
              },
              "leftValue": "={{ $('table exists?').item.json.exists }}",
              "rightValue": "true"
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "8ad9bc36-08b1-408e-ba20-5618a801b4ed",
      "name": "表存在?",
      "type": "n8n-nodes-base.postgres",
      "position": [
        1000,
        2060
      ],
      "parameters": {
        "query": "SELECT EXISTS (\n    SELECT 1 \n    FROM information_schema.tables \n    WHERE table_name = 'ai_table_{{ $json.sheet_name }}'\n);\n",
        "options": {},
        "operation": "executeQuery"
      },
      "credentials": {
        "postgres": {
          "id": "KQiQIZTArTBSNJH7",
          "name": "Postgres account"
        }
      },
      "typeVersion": 2.5
    },
    {
      "id": "f66b7ca7-ecb7-47fc-9214-2d2b37b0fbe4",
      "name": "获取表格数据",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        1180,
        2060
      ],
      "parameters": {
        "options": {},
        "sheetName": {
          "__rl": true,
          "mode": "name",
          "value": "={{ $('change_this').item.json.sheet_name }}"
        },
        "documentId": {
          "__rl": true,
          "mode": "url",
          "value": "={{ $('change_this').item.json.table_url }}"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "3au0rUsZErkG0zc2",
          "name": "Google Sheets account"
        }
      },
      "typeVersion": 4.5
    },
    {
      "id": "11ba5da0-e7c4-49ee-8d35-24c8d3b9fea9",
      "name": "删除表",
      "type": "n8n-nodes-base.postgres",
      "position": [
        980,
        2360
      ],
      "parameters": {
        "query": "DROP TABLE IF EXISTS ai_table_{{ $('change_this').item.json.sheet_name }} CASCADE;",
        "options": {},
        "operation": "executeQuery"
      },
      "credentials": {
        "postgres": {
          "id": "KQiQIZTArTBSNJH7",
          "name": "Postgres account"
        }
      },
      "typeVersion": 2.5
    },
    {
      "id": "3936ecb3-f084-4f86-bd5f-abab0957ebc0",
      "name": "创建表",
      "type": "n8n-nodes-base.postgres",
      "position": [
        1460,
        2360
      ],
      "parameters": {
        "query": "{{ $json.query }}",
        "options": {},
        "operation": "executeQuery"
      },
      "credentials": {
        "postgres": {
          "id": "KQiQIZTArTBSNJH7",
          "name": "Postgres account"
        }
      },
      "typeVersion": 2.5
    },
    {
      "id": "8a3ea239-f3fa-4c72-af99-31f4bd992b58",
      "name": "执行插入",
      "type": "n8n-nodes-base.postgres",
      "position": [
        1860,
        2360
      ],
      "parameters": {
        "query": "{{$json.query}}",
        "options": {
          "queryReplacement": "={{$json.parameters}}"
        },
        "operation": "executeQuery"
      },
      "credentials": {
        "postgres": {
          "id": "KQiQIZTArTBSNJH7",
          "name": "Postgres account"
        }
      },
      "typeVersion": 2.5
    },
    {
      "id": "21239928-b573-4753-a7ca-5a9c3aa8aa3e",
      "name": "执行工作流触发器",
      "type": "n8n-nodes-base.executeWorkflowTrigger",
      "position": [
        1720,
        1720
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "c94256a9-e44e-4800-82f8-90f85ba90bde",
      "name": "便签",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1920,
        1460
      ],
      "parameters": {
        "color": 7,
        "width": 500,
        "height": 260,
        "content": "将其放在名为以下内容的单独工作流中:"
      },
      "typeVersion": 1
    },
    {
      "id": "daec928e-58ee-43da-bd91-ba8bcd639a4a",
      "name": "便签1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1920,
        1840
      ],
      "parameters": {
        "color": 7,
        "width": 500,
        "height": 280,
        "content": "将其放在名为以下的单独工作流中:"
      },
      "typeVersion": 1
    },
    {
      "id": "8908e342-fcbe-4820-b623-cb95a55ea5db",
      "name": "当收到聊天消息时",
      "type": "@n8n/n8n-nodes-langchain.manualChatTrigger",
      "position": [
        640,
        1540
      ],
      "parameters": {},
      "typeVersion": 1.1
    },
    {
      "id": "d0ae90c2-169e-44d7-b3c2-4aff8e7d4be9",
      "name": "响应输出",
      "type": "n8n-nodes-base.set",
      "position": [
        2220,
        1540
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "e2f94fb1-3deb-466a-a36c-e3476511d5f2",
              "name": "response",
              "type": "string",
              "value": "={{ $json }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "81c58d9b-ded4-4b74-8227-849e665cbdff",
      "name": "SQL 查询执行器",
      "type": "n8n-nodes-base.postgres",
      "position": [
        2000,
        1540
      ],
      "parameters": {
        "query": "{{ $json.query.sql }}",
        "options": {},
        "operation": "executeQuery"
      },
      "credentials": {
        "postgres": {
          "id": "KQiQIZTArTBSNJH7",
          "name": "Postgres account"
        }
      },
      "typeVersion": 2.5
    },
    {
      "id": "377d1727-4577-41bb-8656-38273fc4412b",
      "name": "模式查找器",
      "type": "n8n-nodes-base.postgres",
      "position": [
        2000,
        1920
      ],
      "parameters": {
        "query": "SELECT \n    t.schemaname,\n    t.tablename,\n    c.column_name,\n    c.data_type\nFROM \n    pg_catalog.pg_tables t\nJOIN \n    information_schema.columns c\n    ON t.schemaname = c.table_schema\n    AND t.tablename = c.table_name\nWHERE \n    t.schemaname = 'public'\nORDER BY \n    t.tablename, c.ordinal_position;",
        "options": {},
        "operation": "executeQuery"
      },
      "credentials": {
        "postgres": {
          "id": "KQiQIZTArTBSNJH7",
          "name": "Postgres account"
        }
      },
      "typeVersion": 2.5
    },
    {
      "id": "89d3c59c-2b67-454d-a8f3-e90e75a28a8c",
      "name": "模式转字符串",
      "type": "n8n-nodes-base.code",
      "position": [
        2220,
        1920
      ],
      "parameters": {
        "jsCode": "function transformSchema(input) {\n    const tables = {};\n    \n    input.forEach(({ json }) => {\n        if (!json) return;\n        \n        const { tablename, schemaname, column_name, data_type } = json;\n        \n        if (!tables[tablename]) {\n            tables[tablename] = { schema: schemaname, columns: [] };\n        }\n        tables[tablename].columns.push(`${column_name} (${data_type})`);\n    });\n    \n    return Object.entries(tables)\n        .map(([tablename, { schema, columns }]) => `Table ${tablename} (Schema: ${schema}) has columns: ${columns.join(\", \")}`)\n        .join(\"\\n\\n\");\n}\n\n// Example usage\nconst input = $input.all();\n\nconst transformedSchema = transformSchema(input);\n\nreturn { data: transformedSchema };"
      },
      "typeVersion": 2
    },
    {
      "id": "42d1b316-60ca-49db-959b-581b162ca1f9",
      "name": "带 SQL 查询提示的 AI 代理",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        900,
        1540
      ],
      "parameters": {
        "options": {
          "maxIterations": 5,
          "systemMessage": "=## Role\nYou are a **Database Query Assistant** specializing in generating PostgreSQL queries based on natural language questions. You analyze database schemas, construct appropriate SQL queries, and provide clear explanations of results.\n\n## Tools\n1. `get_postgres_schema`: Retrieves the complete database schema (tables and columns)\n2. `execute_query_tool`: Executes SQL queries with the following input format:\n   ```json\n   {\n     \"sql\": \"Your SQL query here\"\n   }\n   ```\n\n## Process Flow\n\n### 1. Analyze the Question\n- Identify the **data entities** being requested (products, customers, orders, etc.)\n- Determine the **query type** (COUNT, AVG, SUM, SELECT, etc.)\n- Extract any **filters** or **conditions** mentioned\n\n### 2. Fetch and Analyze Schema\n- Call `get_postgres_schema` to retrieve database structure\n- Identify relevant tables and columns that match the entities in the question\n- Prioritize exact matches, then semantic matches\n\n### 3. Query Construction\n- Build case-insensitive queries using `LOWER(column) LIKE LOWER('%value%')`\n- Filter out NULL or empty values with appropriate WHERE clauses\n- Use joins when information spans multiple tables\n- Apply aggregations (COUNT, SUM, AVG) as needed\n\n### 4. Query Execution\n- Execute query using the `execute_query_tool` with proper formatting\n- If results require further processing, perform calculations as needed\n\n### 5. Result Presentation\n- Format results in a conversational, easy-to-understand manner\n- Explain how the data was retrieved and any calculations performed\n- When appropriate, suggest further questions the user might want to ask\n\n## Best Practices\n- Use parameterized queries to prevent SQL injection\n- Implement proper error handling\n- Respond with \"NOT_ENOUGH_INFO\" when the question lacks specificity\n- Always verify table/column existence before attempting queries\n- Use explicit JOINs instead of implicit joins\n- Limit large result sets when appropriate\n\n## Numeric Validation (IMPORTANT)\nWhen validating or filtering numeric values in string columns:\n1. **AVOID** complex regular expressions with `~` operator as they cause syntax errors\n2. Use these safer alternatives instead:\n   ```sql\n   -- Simple numeric check without regex\n   WHERE column_name IS NOT NULL AND trim(column_name) != '' AND column_name NOT LIKE '%[^0-9.]%'\n   \n   -- For type casting with validation\n   WHERE column_name IS NOT NULL AND trim(column_name) != '' AND column_name ~ '[0-9]'\n   \n   -- Safe numeric conversion\n   WHERE CASE WHEN column_name ~ '[0-9]' THEN TRUE ELSE FALSE END\n   ```\n3. For simple pattern matching, use LIKE instead of regex when possible\n4. When CAST is needed, always guard against invalid values:\n   ```sql\n   SELECT SUM(CASE WHEN column_name ~ '[0-9]' THEN CAST(column_name AS NUMERIC) ELSE 0 END) AS total\n   ```\n\n## Response Structure\n1. **Analysis**: Brief mention of how you understood the question\n2. **Query**: The SQL statement used (in code block format)\n3. **Results**: Clear presentation of the data found\n4. **Explanation**: Simple description of how the data was retrieved\n\n## Examples\n\n### Example 1: Basic Counting Query\n**Question**: \"How many products are in the inventory?\"\n\n**Process**:\n1. Analyze schema to find product/inventory tables\n2. Construct a COUNT query on the relevant table\n3. Execute the query\n4. Present the count with context\n\n**SQL**:\n```sql\nSELECT COUNT(*) AS product_count \nFROM products \nWHERE quantity IS NOT NULL;\n```\n\n**Response**:\n\"There are 1,250 products currently in the inventory. This count includes all items with a non-null quantity value in the products table.\"\n\n### Example 2: Filtered Aggregation Query\n**Question**: \"What is the average order value for premium customers?\"\n\n**Process**:\n1. Identify relevant tables (orders, customers)\n2. Determine join conditions\n3. Apply filters for \"premium\" customers\n4. Calculate average\n\n**SQL**:\n```sql\nSELECT AVG(o.total_amount) AS avg_order_value\nFROM orders o\nJOIN customers c ON o.customer_id = c.id\nWHERE LOWER(c.customer_type) = LOWER('premium')\nAND o.total_amount IS NOT NULL;\n```\n\n**Response**:\n\"Premium customers spend an average of $85.42 per order. This was calculated by averaging the total_amount from all orders placed by customers with a 'premium' customer type.\"\n\n### Example 3: Numeric Calculation from String Column\n**Question**: \"What is the total of all ratings?\"\n\n**Process**:\n1. Find the ratings table and column\n2. Use safe numeric validation\n3. Sum the values\n\n**SQL**:\n```sql\nSELECT SUM(CASE WHEN rating ~ '[0-9]' THEN CAST(rating AS NUMERIC) ELSE 0 END) AS total_rating\nFROM ratings\nWHERE rating IS NOT NULL AND trim(rating) != '';\n```\n\n**Response**:\n\"The sum of all ratings is 4,285. This calculation includes all valid numeric ratings from the ratings table.\"\n\n### Example 4: Date Range Aggregation for Revenue  \n**Question**: \"How much did I make last week?\"  \n\n**Process**:  \n1. Identify the sales table and relevant columns (e.g., `sale_date` for dates and `revenue_amount` for revenue).  \n2. Use PostgreSQL date functions (`date_trunc` and interval arithmetic) to calculate the date range for the previous week.  \n3. Sum the revenue within the computed date range.  \n\n**SQL**:  \n```sql\nSELECT SUM(revenue_amount) AS total_revenue\nFROM sales_data\nWHERE sale_date >= date_trunc('week', CURRENT_DATE) - INTERVAL '1 week'\n  AND sale_date < date_trunc('week', CURRENT_DATE);\n```  \n\n**Response**:  \n\"Last week's total revenue is calculated by summing the `revenue_amount` for records where the `sale_date` falls within the previous week. This query uses date functions to dynamically determine the correct date range.\"\n\nToday's date: {{ $now }}"
        }
      },
      "typeVersion": 1.7
    },
    {
      "id": "368d68d0-1fe0-4dbf-9b24-ac28fd6e74c3",
      "name": "便签2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        560,
        1420
      ],
      "parameters": {
        "color": 6,
        "width": 960,
        "height": 460,
        "content": "## 使用强大的 LLM 正确构建 SQL 查询,这些查询将通过获取模式工具识别,然后由执行查询工具执行。"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "d8045db4-2852-4bbe-9b97-0d3c0acb53f7",
  "connections": {
    "change_this": {
      "main": [
        [
          {
            "node": "table exists?",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "create table": {
      "main": [
        [
          {
            "node": "create insertion query",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "remove table": {
      "main": [
        [
          {
            "node": "create table query",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "schema finder": {
      "main": [
        [
          {
            "node": "schema to string",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "table exists?": {
      "main": [
        [
          {
            "node": "fetch sheet data",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "fetch sheet data": {
      "main": [
        [
          {
            "node": "is not in database",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "create table query": {
      "main": [
        [
          {
            "node": "create table",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "execute_query_tool": {
      "ai_tool": [
        [
          {
            "node": "AI Agent With SQL Query Prompt",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "is not in database": {
      "main": [
        [
          {
            "node": "create table query",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "remove table",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "sql query executor": {
      "main": [
        [
          {
            "node": "response output",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "get_postgres_schema": {
      "ai_tool": [
        [
          {
            "node": "AI Agent With SQL Query Prompt",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "Google Drive Trigger": {
      "main": [
        [
          {
            "node": "change_this",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "create insertion query": {
      "main": [
        [
          {
            "node": "perform insertion",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Execute Workflow Trigger": {
      "main": [
        [
          {
            "node": "sql query executor",
            "type": "main",
            "index": 0
          },
          {
            "node": "schema finder",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Google Gemini Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "AI Agent With SQL Query Prompt",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "When chat message received": {
      "main": [
        [
          {
            "node": "AI Agent With SQL Query Prompt",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
常见问题

如何使用这个工作流?

复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。

这个工作流适合什么场景?

高级 - 工程, 产品

需要付费吗?

本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。

工作流信息
难度等级
高级
节点数量23
分类2
节点类型12
难度说明

适合高级用户,包含 16+ 个节点的复杂工作流

作者
Leonardo Grigorio

Leonardo Grigorio

@leonardogrig

I combine my full-stack development expertise with AI automation using n8n, creating scalable workflows and seamless integrations for smarter business solutions.

外部链接
在 n8n.io 查看

分享此工作流