🦙👁️👁️ 通过比较找到最佳本地 Ollama 视觉模型
高级
这是一个AI领域的自动化工作流,包含 19 个节点。主要使用 Set, SplitOut, GoogleDocs, GoogleDrive, HttpRequest 等节点,结合人工智能技术实现智能自动化。 使用 Google Docs 比较本地 Ollama 视觉模型进行图像分析
前置要求
- •Google Drive API 凭证
- •可能需要目标 API 的认证凭证
使用的节点 (19)
分类
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "keFEBUqHOrsib60G",
"meta": {
"instanceId": "31e69f7f4a77bf465b805824e303232f0227212ae922d12133a0f96ffeab4fef",
"templateCredsSetupCompleted": true
},
"name": "🦙👁️👁️ 通过比较找到最佳本地 Ollama 视觉模型",
"tags": [],
"nodes": [
{
"id": "dd2f1201-a78a-4ea9-b5ff-7543673e8445",
"name": "便签1",
"type": "n8n-nodes-base.stickyNote",
"position": [
1080,
1160
],
"parameters": {
"color": 4,
"width": 340,
"height": 340,
"content": "## 👁️ 使用本地 Ollama LLM 分析图像"
},
"typeVersion": 1
},
{
"id": "81975be4-1e40-41e9-b938-612270f80a92",
"name": "便签2",
"type": "n8n-nodes-base.stickyNote",
"position": [
280,
640
],
"parameters": {
"color": 4,
"width": 300,
"height": 300,
"content": "## 👍试试看!"
},
"typeVersion": 1
},
{
"id": "3a56f75b-4836-4c37-a246-83ef6507c581",
"name": "当点击\"测试工作流\"时",
"type": "n8n-nodes-base.manualTrigger",
"position": [
380,
740
],
"parameters": {},
"typeVersion": 1
},
{
"id": "bb4570c7-269c-4d28-85d4-183ca2fabb89",
"name": "Ollama LLM 请求",
"type": "n8n-nodes-base.httpRequest",
"position": [
1200,
1280
],
"parameters": {
"url": "http://127.0.0.1:11434/api/chat",
"method": "POST",
"options": {},
"jsonBody": "={{ $json.body }}",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"headerParameters": {
"parameters": [
{
"name": "Content-Type",
"value": " application/json"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "0a6e064d-9a67-4cd2-b3ed-247a1684c1fb",
"name": "创建请求体",
"type": "n8n-nodes-base.set",
"position": [
840,
1280
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "be9a8e21-9bb6-4588-a77a-61bc2def0648",
"name": "body",
"type": "string",
"value": "={\n \"model\": \"{{ $json.models }}\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"{{ $json.user_prompt }}\",\n \"images\": [\"{{ $('List of Vision Models').item.json.data }}\"]\n }\n ],\n \"stream\": false\n}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "f3119aff-62bc-4ffc-abe9-835dea105d76",
"name": "循环遍历 Ollama 模型",
"type": "n8n-nodes-base.splitInBatches",
"position": [
360,
1180
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "1e26f493-881e-40a3-922d-5c8d6cb86374",
"name": "创建结果对象",
"type": "n8n-nodes-base.set",
"position": [
620,
1080
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "780086e5-2733-435a-90b5-fd10946ddd7a",
"name": "result",
"type": "object",
"value": "={{ $json }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "ac0d3ada-8890-4945-aedb-fd6be4ffc020",
"name": "通用图像提示",
"type": "n8n-nodes-base.set",
"position": [
620,
1280
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "be9a8e21-9bb6-4588-a77a-61bc2def0648",
"name": "user_prompt",
"type": "string",
"value": "=Analyze this image in exhaustive detail using this structure:\\n\\n1. **Comprehensive Inventory**\\n- List all visible objects with descriptors (size, color, position)\\n- Group related items hierarchically (primary subject → secondary elements → background)\\n- Note object conditions (intact/broken, new/aged)\\n\\n2. **Contextual Analysis**\\n- Identify probable setting/location with supporting evidence\\n- Determine time period/season through visual cues\\n- Analyze lighting conditions and shadow orientation\\n\\n3. **Spatial Relationships**\\n- Map object positions using grid coordinates (front/center/back, left/right)\\n- Describe size comparisons between elements\\n- Note overlapping/occluded objects\\n\\n4. **Textual Elements**\\n- Extract ALL text with font characteristics\\n- Identify logos/brands with confidence estimates\\n- Translate non-native text with cultural context\\n\\nFormat response in markdown with clear section headers and bullet points."
}
]
},
"includeOtherFields": true
},
"typeVersion": 3.4
},
{
"id": "b7faafca-a179-43b2-8318-29b4659d424f",
"name": "房地产电子表格提示",
"type": "n8n-nodes-base.set",
"disabled": true,
"position": [
620,
1480
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "be9a8e21-9bb6-4588-a77a-61bc2def0648",
"name": "user_prompt",
"type": "string",
"value": "=Analyze this spreadsheet image in exhaustive detail using this structure:\\n\\n1. **Table Structure**\\n- Identify all column headers (months) in order\\n- List all row labels exactly as shown\\n- Note any table titles, footnotes, or metadata\\n\\n2. **Data Extraction**\\n- Extract all numeric values with precise formatting (decimals, currency symbols)\\n- Maintain exact numbers for Listings, Sales, Months of Inventory\\n- Preserve currency formatting for Avg. Price values\\n- Include DOM values from separate section\\n\\n3. **Markdown Representation**\\n- Convert the entire spreadsheet into a perfectly formatted markdown table\\n- Maintain alignment of all columns and rows\\n- Preserve all relationships between data points\\n\\n4. **Data Analysis**\\n- Identify trends across months for each metric\\n- Note highest and lowest values in each category\\n- Calculate percentage changes between months where relevant\\n\\nFormat response with a complete markdown table first, followed by brief analysis of the real estate market data shown."
}
]
},
"includeOtherFields": true
},
"typeVersion": 3.4
},
{
"id": "5c28053b-a44e-494b-ad03-27d5b217f6b3",
"name": "视觉模型列表",
"type": "n8n-nodes-base.set",
"position": [
1440,
740
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "86add667-cd96-4e1c-877a-c437f6b1e040",
"name": "models",
"type": "array",
"value": "=[\"granite3.2-vision\",\"llama3.2-vision\",\"gemma3:27b\"]"
}
]
},
"includeOtherFields": true
},
"typeVersion": 3.4
},
{
"id": "58c2fcd2-0ac4-4684-a30f-37650cc8dac1",
"name": "获取 Base64 字符串",
"type": "n8n-nodes-base.extractFromFile",
"position": [
1140,
740
],
"parameters": {
"options": {},
"operation": "binaryToPropery"
},
"typeVersion": 1
},
{
"id": "b60c0589-397c-445b-a084-a791bef95b15",
"name": "从 Google Drive 下载图像文件",
"type": "n8n-nodes-base.googleDrive",
"position": [
920,
740
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "id",
"value": "={{ $json.id }}"
},
"options": {},
"operation": "download"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "UhdXGYLTAJbsa0xX",
"name": "Google Drive account"
}
},
"typeVersion": 3
},
{
"id": "55a8f511-fdb5-4830-837a-104cbf6c6167",
"name": "分割视觉模型列表以进行循环",
"type": "n8n-nodes-base.splitOut",
"position": [
1640,
740
],
"parameters": {
"options": {},
"fieldToSplitOut": "models"
},
"typeVersion": 1
},
{
"id": "8e48c8bd-15c9-4389-8698-77dc5ae698bc",
"name": "便签",
"type": "n8n-nodes-base.stickyNote",
"position": [
620,
640
],
"parameters": {
"color": 7,
"width": 700,
"height": 300,
"content": "## ⬇️从 Google Drive 下载图像"
},
"typeVersion": 1
},
{
"id": "6ed8925d-b031-4052-9009-91e2e7d8f360",
"name": "便签3",
"type": "n8n-nodes-base.stickyNote",
"position": [
1360,
640
],
"parameters": {
"color": 7,
"width": 460,
"height": 300,
"content": "## 📜创建本地 Ollama 视觉模型列表"
},
"typeVersion": 1
},
{
"id": "ae383e4f-21e6-479f-97e0-029f43dacc56",
"name": "便签4",
"type": "n8n-nodes-base.stickyNote",
"position": [
280,
980
],
"parameters": {
"color": 7,
"width": 1200,
"height": 720,
"content": "## 🦙👁️👁️ 使用 Ollama 视觉模型处理图像并将结果保存到 Google Drive"
},
"typeVersion": 1
},
{
"id": "a27bcb6e-c6e8-4777-9887-428363256b4a",
"name": "Google 文档图像 ID",
"type": "n8n-nodes-base.set",
"position": [
700,
740
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "7d5a0385-4d8b-4f70-b3b0-4182bda29e5c",
"name": "id",
"type": "string",
"value": "=[your-google-id]"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "8e6114f8-c724-40fd-9be3-253e3cb882fa",
"name": "将图像描述保存到 Google 文档",
"type": "n8n-nodes-base.googleDocs",
"position": [
840,
1080
],
"parameters": {
"actionsUi": {
"actionFields": [
{
"text": "=<{{ $json.result.model }}>\n{{ $json.result.message.content }}\n</{{ $json.result.model }}>\n\n",
"action": "insert"
}
]
},
"operation": "update",
"documentURL": "[your-google-doc-id]"
},
"credentials": {
"googleDocsOAuth2Api": {
"id": "YWEHuG28zOt532MQ",
"name": "Google Docs account"
}
},
"typeVersion": 2
},
{
"id": "abed9af8-0d50-413a-9e6d-c6100ddaf015",
"name": "便签5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-240,
640
],
"parameters": {
"width": 480,
"height": 1340,
"content": "## 🦙👁️👁️ 为您的用例找到最佳本地 Ollama 视觉模型"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "a337e019-1c9a-4736-8dcd-4f12a9d989f4",
"connections": {
"Get Base64 String": {
"main": [
[
{
"node": "List of Vision Models",
"type": "main",
"index": 0
}
]
]
},
"Ollama LLM Request": {
"main": [
[
{
"node": "Loop Over Ollama Models",
"type": "main",
"index": 0
}
]
]
},
"Create Request Body": {
"main": [
[
{
"node": "Ollama LLM Request",
"type": "main",
"index": 0
}
]
]
},
"Google Doc Image Id": {
"main": [
[
{
"node": "Download Image File from Google Drive",
"type": "main",
"index": 0
}
]
]
},
"General Image Prompt": {
"main": [
[
{
"node": "Create Request Body",
"type": "main",
"index": 0
}
]
]
},
"Create Result Objects": {
"main": [
[
{
"node": "Save Image Descriptions to Google Docs",
"type": "main",
"index": 0
}
]
]
},
"List of Vision Models": {
"main": [
[
{
"node": "Split List of Vision Models for Looping",
"type": "main",
"index": 0
}
]
]
},
"Loop Over Ollama Models": {
"main": [
[
{
"node": "Create Result Objects",
"type": "main",
"index": 0
}
],
[
{
"node": "General Image Prompt",
"type": "main",
"index": 0
}
]
]
},
"Real Estate Spreadsheet Prompt": {
"main": [
[]
]
},
"When clicking ‘Test workflow’": {
"main": [
[
{
"node": "Google Doc Image Id",
"type": "main",
"index": 0
}
]
]
},
"Download Image File from Google Drive": {
"main": [
[
{
"node": "Get Base64 String",
"type": "main",
"index": 0
}
]
]
},
"Split List of Vision Models for Looping": {
"main": [
[
{
"node": "Loop Over Ollama Models",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
高级 - 人工智能
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
💡🌐 基于Jina.ai的多页面网站爬虫
💡🌐 使用Jina.ai的多页面网站爬虫工具
Set
Xml
Code
+9
16 节点Joseph LePage
人工智能
🤖 面向您的文档+Google Drive+Gemini+Qdrant的AI驱动RAG聊天机器人
🤖 面向您的文档+Google Drive+Gemini+Qdrant的AI驱动RAG聊天机器人
If
Set
Wait
+21
50 节点Joseph LePage
人工智能
🎦🚀 YouTube 视频评论分析智能体
🎦🚀 YouTube 视频评论分析智能体
Set
Code
Gmail
+12
25 节点Joseph LePage
人工智能
(Duc)深度研究市场模板
集成PerplexityAI研究和OpenAI内容的多层级WordPress博客生成器
If
Set
Xml
+28
132 节点Daniel Ng
人工智能
WordPress博客自动化专业版(SEO主题)v2
WordPress自动博客专业版 - SEO主题内容自动化机器
If
Set
Xml
+21
63 节点Daniel Ng
人工智能
WordPress博客自动化专业版(深度研究)v1
WordPress自动博客专业版 - 含深度研究的内容自动化机器
If
Set
Xml
+24
77 节点Daniel Ng
人工智能
工作流信息
难度等级
高级
节点数量19
分类1
节点类型9
作者
Joseph LePage
@joeAs an AI Automation consultant based in Canada, I partner with forward-thinking organizations to implement AI solutions that streamline operations and drive growth.
外部链接
在 n8n.io 查看 →
分享此工作流