使用Bright Data和Gemini AI提取并总结Wikipedia数据
中级
这是一个Other, AI领域的自动化工作流,包含 12 个节点。主要使用 Set, HttpRequest, ManualTrigger, ChainLlm, ChainSummarization 等节点,结合人工智能技术实现智能自动化。 使用Bright Data和Gemini AI提取和总结Wikipedia数据
前置要求
- •可能需要目标 API 的认证凭证
- •Google Gemini API Key
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "sczRNO4u1HYc5YV7",
"meta": {
"instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
"templateCredsSetupCompleted": true
},
"name": "使用 Bright Data 和 Gemini AI 提取并总结 Wikipedia 数据",
"tags": [
{
"id": "Kujft2FOjmOVQAmJ",
"name": "Engineering",
"createdAt": "2025-04-09T01:31:00.558Z",
"updatedAt": "2025-04-09T01:31:00.558Z"
},
{
"id": "ddPkw7Hg5dZhQu2w",
"name": "AI",
"createdAt": "2025-04-13T05:38:08.053Z",
"updatedAt": "2025-04-13T05:38:08.053Z"
}
],
"nodes": [
{
"id": "0f4b4939-6356-4672-ae61-8d1daf66a168",
"name": "当点击\"测试工作流\"时",
"type": "n8n-nodes-base.manualTrigger",
"position": [
340,
-440
],
"parameters": {},
"typeVersion": 1
},
{
"id": "167e060a-c36c-462a-826c-81ef379c824b",
"name": "用于摘要的 Google Gemini 聊天模型",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1520,
-60
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "a51f2634-8b59-4feb-be39-674e8f198714",
"name": "Google Gemini 聊天模型2",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1000,
-240
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-pro-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "a1ec001f-6e97-4efb-91d9-9a037fbf472c",
"name": "摘要 Webhook 通知器",
"type": "n8n-nodes-base.httpRequest",
"position": [
1860,
-280
],
"parameters": {
"url": "https://webhook.site/ce41e056-c097-48c8-a096-9b876d3abbf7",
"options": {},
"sendBody": true,
"bodyParameters": {
"parameters": [
{
"name": "summary",
"value": "={{ $json.response.text }}"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "f4dd93b5-2a33-4ac7-a0c9-9e0956bea363",
"name": "便签",
"type": "n8n-nodes-base.stickyNote",
"position": [
340,
-820
],
"parameters": {
"width": 400,
"height": 300,
"content": "## 注意"
},
"typeVersion": 1
},
{
"id": "9bd6f913-c526-4e54-81f8-8885a0fe974f",
"name": "便签1",
"type": "n8n-nodes-base.stickyNote",
"position": [
780,
-820
],
"parameters": {
"width": 500,
"height": 300,
"content": "## LLM 使用情况"
},
"typeVersion": 1
},
{
"id": "30008ce4-4de2-43c5-bb03-94db58262f86",
"name": "Wikipedia 网络请求",
"type": "n8n-nodes-base.httpRequest",
"position": [
780,
-440
],
"parameters": {
"url": "https://api.brightdata.com/request",
"method": "POST",
"options": {},
"sendBody": true,
"sendHeaders": true,
"authentication": "genericCredentialType",
"bodyParameters": {
"parameters": [
{
"name": "zone",
"value": "={{ $json.zone }}"
},
{
"name": "url",
"value": "={{ $json.url }}"
},
{
"name": "format",
"value": "raw"
}
]
},
"genericAuthType": "httpHeaderAuth",
"headerParameters": {
"parameters": [
{}
]
}
},
"credentials": {
"httpHeaderAuth": {
"id": "kdbqXuxIR8qIxF7y",
"name": "Header Auth account"
}
},
"typeVersion": 4.2
},
{
"id": "28656a7d-4bd8-41c8-8471-50d19d88e7f2",
"name": "LLM 数据提取器",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
1000,
-440
],
"parameters": {
"text": "={{ $json.data }}",
"messages": {
"messageValues": [
{
"message": "You are an expert Data Formatter. Make sure to format the data in a human readable manner. Please output the human readable content without your own thoughts"
}
]
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.6
},
{
"id": "7045af3b-9e74-42ef-92f0-f8d3266f2890",
"name": "简洁摘要生成器",
"type": "@n8n/n8n-nodes-langchain.chainSummarization",
"position": [
1440,
-280
],
"parameters": {
"options": {
"summarizationMethodAndPrompts": {
"values": {
"prompt": "Write a concise summary of the following:\n\n\n\"{text}\"\n"
}
}
},
"chunkingMode": "advanced"
},
"typeVersion": 2
},
{
"id": "0cc843c1-252a-4c18-9856-5c7dfc732072",
"name": "使用 Bright Data Zone 设置 Wikipedia URL",
"type": "n8n-nodes-base.set",
"notes": "Set the URL which you are interested to scrap the data",
"position": [
560,
-440
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "1c132dd6-31e4-453b-a8cf-cad9845fe55b",
"name": "url",
"type": "string",
"value": "https://en.wikipedia.org/wiki/Cloud_computing?product=unlocker&method=api"
},
{
"id": "0fa387df-2511-4228-b6aa-237cceb3e9c7",
"name": "zone",
"type": "string",
"value": "web_unlocker1"
}
]
}
},
"notesInFlow": true,
"typeVersion": 3.4
},
{
"id": "6cb9930f-1924-4762-8150-f5cd0e063348",
"name": "便签2",
"type": "n8n-nodes-base.stickyNote",
"position": [
940,
-500
],
"parameters": {
"color": 4,
"width": 380,
"height": 420,
"content": "## 基础 LLM 链数据提取器"
},
"typeVersion": 1
},
{
"id": "47811535-bce5-4946-aaa6-baef87db1100",
"name": "便签3",
"type": "n8n-nodes-base.stickyNote",
"position": [
1400,
-340
],
"parameters": {
"color": 5,
"width": 340,
"height": 420,
"content": "## 摘要链"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "5b5e78fb-6e5a-4b92-838c-6c4060618e9c",
"connections": {
"LLM Data Extractor": {
"main": [
[
{
"node": "Concise Summary Generator",
"type": "main",
"index": 0
}
]
]
},
"Wikipedia Web Request": {
"main": [
[
{
"node": "LLM Data Extractor",
"type": "main",
"index": 0
}
]
]
},
"Concise Summary Generator": {
"main": [
[
{
"node": "Summary Webhook Notifier",
"type": "main",
"index": 0
}
]
]
},
"Google Gemini Chat Model2": {
"ai_languageModel": [
[
{
"node": "LLM Data Extractor",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"When clicking ‘Test workflow’": {
"main": [
[
{
"node": "Set Wikipedia URL with Bright Data Zone",
"type": "main",
"index": 0
}
]
]
},
"Set Wikipedia URL with Bright Data Zone": {
"main": [
[
{
"node": "Wikipedia Web Request",
"type": "main",
"index": 0
}
]
]
},
"Google Gemini Chat Model For Summarization": {
"ai_languageModel": [
[
{
"node": "Concise Summary Generator",
"type": "ai_languageModel",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
中级 - 其他, 人工智能
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
使用Bright Data进行品牌内容提取、摘要与情感分析
使用Bright Data和Google Gemini提取和分析品牌内容
Set
Function
Http Request
+7
23 节点Ranjan Dailata
人工智能
使用Gemini AI和Bright Data提取和总结必应Copilot搜索结果
使用Gemini AI和Bright Data提取和总结必应Copilot搜索结果
If
Set
Wait
+9
19 节点Ranjan Dailata
人工智能
使用Bright Data和Google Gemini提取并汇总Indeed公司信息
使用Bright Data和Google Gemini提取和汇总Indeed公司信息
Set
Markdown
Http Request
+7
15 节点Ranjan Dailata
人力资源
使用Bright Data和Google Gemini提取并总结Yelp商家评论
使用Bright Data和Google Gemini提取和总结Yelp商家评论
Set
Merge
Http Request
+6
12 节点Ranjan Dailata
人工智能
通过Bright Data提取、总结和分析亚马逊产品降价情况
使用Bright Data和Google Gemini提取、总结和分析亚马逊降价信息
Set
Wait
Merge
+14
26 节点Ranjan Dailata
人工智能
Google趋势数据提取,使用Bright Data和Google Gemini进行摘要生成
使用Bright Data和Google Gemini的Google趋势数据提取与摘要生成
Set
Gmail
Function
+8
16 节点Ranjan Dailata
工程