动态切换LLM模板
高级
这是一个Engineering, Building Blocks, AI领域的自动化工作流,包含 22 个节点。主要使用 If, Set, Code, ChainLlm, ChatTrigger 等节点,结合人工智能技术实现智能自动化。 使用LangChain代码在AI代理之间动态切换LLM
前置要求
- •OpenAI API Key
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "dQC8kExvbCrovWf0",
"meta": {
"instanceId": "fb8bc2e315f7f03c97140b30aa454a27bc7883a19000fa1da6e6b571bf56ad6d",
"templateCredsSetupCompleted": true
},
"name": "动态切换 LLM 模板",
"tags": [],
"nodes": [
{
"id": "962c4b29-c244-4d68-93e1-cacd41b436fc",
"name": "当收到聊天消息时",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
220,
80
],
"webhookId": "713a7f98-0e3d-4eb7-aafa-599ca627c8b4",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "6fc4f336-09e3-4e79-94e9-e5eff04e4089",
"name": "切换模型",
"type": "@n8n/n8n-nodes-langchain.code",
"position": [
540,
320
],
"parameters": {
"code": {
"supplyData": {
"code": "let llms = await this.getInputConnectionData('ai_languageModel', 0);\nllms.reverse(); // reverse array, so the order matches the UI elements\n\nconst llm_index = $input.item.json.llm_index;\nif (!Number.isInteger(llm_index)) {\n console.log(\"'llm_index' is udefined or not a valid integer\");\n throw new Error(\"'llm_index' is udefined or not a valid integer\");\n}\n\nif(typeof llms[llm_index] === 'undefined') {\n console.log(`No LLM found with index ${llm_index}`);\n throw new Error(`No LLM found with index ${llm_index}`);\n}\n\nreturn llms[llm_index];"
}
},
"inputs": {
"input": [
{
"type": "ai_languageModel",
"required": true
}
]
},
"outputs": {
"output": [
{
"type": "ai_languageModel"
}
]
}
},
"typeVersion": 1
},
{
"id": "68511483-355b-45c1-915f-e7517c42b809",
"name": "设置 LLM 索引",
"type": "n8n-nodes-base.set",
"position": [
440,
80
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "24b4d30e-484a-4cc1-a691-0653ed764296",
"name": "llm_index",
"type": "number",
"value": "={{ $json.llm_index || 0 }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "adc2f24c-0ad6-4057-bb3b-b46563c72ee8",
"name": "增加 LLM 索引",
"type": "n8n-nodes-base.set",
"position": [
1420,
-200
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "24b4d30e-484a-4cc1-a691-0653ed764296",
"name": "llm_index",
"type": "number",
"value": "={{ $('Set LLM index').item.json.llm_index + 1 }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "eace2dd7-9550-47ba-a4c3-4f065f80757b",
"name": "无操作,不执行任何操作",
"type": "n8n-nodes-base.noOp",
"position": [
1640,
540
],
"parameters": {},
"typeVersion": 1
},
{
"id": "c1735d1c-5dc4-4bd5-9dde-3bb04b8811c3",
"name": "检查预期错误",
"type": "n8n-nodes-base.if",
"position": [
1040,
160
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "3253e1f2-172e-4af4-a492-3b9c6e9e4797",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json.error }}",
"rightValue": "Error in sub-node Switch Model"
}
]
}
},
"typeVersion": 2.2
},
{
"id": "4a259078-aa74-4725-9e91-d2775bbd577f",
"name": "循环完成但无结果",
"type": "n8n-nodes-base.set",
"position": [
1260,
60
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "b352627d-d692-47f8-8f8c-885b68073843",
"name": "output",
"type": "string",
"value": "The loop finished without a satisfying result"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "3b527ed3-a700-403d-8e3c-d0d55a83c9ea",
"name": "意外错误",
"type": "n8n-nodes-base.set",
"position": [
1260,
260
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "b352627d-d692-47f8-8f8c-885b68073843",
"name": "output",
"type": "string",
"value": "An unexpected error happened"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "2a48a244-25ab-4330-9e89-3f8a52b7fd0a",
"name": "返回结果",
"type": "n8n-nodes-base.set",
"position": [
1420,
-460
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "b352627d-d692-47f8-8f8c-885b68073843",
"name": "output",
"type": "string",
"value": "={{ $json.text || $json.output }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "79da2795-800a-423d-ad5b-ec3b0498a5e6",
"name": "OpenAI 4o-mini",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
460,
580
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "X7Jf0zECd3IkQdSw",
"name": "OpenAi (octionicsolutions)"
}
},
"typeVersion": 1.2
},
{
"id": "c5884632-4f21-4e1e-a86d-77e3b18119b9",
"name": "OpenAI 4o",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
640,
580
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o",
"cachedResultName": "gpt-4o"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "X7Jf0zECd3IkQdSw",
"name": "OpenAi (octionicsolutions)"
}
},
"typeVersion": 1.2
},
{
"id": "0693ac6a-fd1e-4a1f-b7be-bd4a1021b6c1",
"name": "OpenAI o1",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
820,
580
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "o1",
"cachedResultName": "o1"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "X7Jf0zECd3IkQdSw",
"name": "OpenAi (octionicsolutions)"
}
},
"typeVersion": 1.2
},
{
"id": "f9fa467a-804d-4abf-84e3-06a88f9142b4",
"name": "OpenAI 聊天模型",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1100,
-100
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "X7Jf0zECd3IkQdSw",
"name": "OpenAi (octionicsolutions)"
}
},
"typeVersion": 1.2
},
{
"id": "7c6bf364-1844-484f-8a1c-1ff87286c686",
"name": "验证响应",
"type": "@n8n/n8n-nodes-langchain.sentimentAnalysis",
"position": [
1040,
-300
],
"parameters": {
"options": {
"categories": "pass, fail",
"systemPromptTemplate": "You are a highly intelligent and accurate sentiment analyzer. Analyze the sentiment of the provided text. Categorize it into one of the following: {categories}. Use the provided formatting instructions. Only output the JSON.\n\n> Evaluate the following customer support response. Give a short JSON answer with a field “quality”: “pass” or “fail”. Only return “pass” if the response:\n\n1. Acknowledges both the broken keyboard and the late delivery \n2. Uses a polite and empathetic tone \n3. Offers a clear resolution or next step (like refund, replacement, or contact support)"
},
"inputText": "={{ $json.text }}"
},
"typeVersion": 1
},
{
"id": "a7be0179-e246-4f75-8863-d03eefe9d8ac",
"name": "生成响应",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"onError": "continueErrorOutput",
"position": [
660,
80
],
"parameters": {
"text": "={{ $('When chat message received').item.json.chatInput }}",
"messages": {
"messageValues": [
{
"message": "=You’re an AI assistant replying to a customer who is upset about a faulty product and late delivery. The customer uses sarcasm and is vague. Write a short, polite response, offering help."
}
]
},
"promptType": "define"
},
"retryOnFail": false,
"typeVersion": 1.6
},
{
"id": "273f4025-2aeb-4a67-859a-690a3a086f82",
"name": "便签",
"type": "n8n-nodes-base.stickyNote",
"position": [
380,
-160
],
"parameters": {
"width": 480,
"height": 140,
"content": "### 客户投诉 - 示例"
},
"typeVersion": 1
},
{
"id": "a7806fab-fdc2-4feb-be53-fcea81ede105",
"name": "便签1",
"type": "n8n-nodes-base.stickyNote",
"position": [
380,
0
],
"parameters": {
"color": 7,
"width": 220,
"height": 240,
"content": "根据索引定义要使用的 LLM 节点。"
},
"typeVersion": 1
},
{
"id": "0117d8d8-672e-458a-a9dd-30b50e05f343",
"name": "便签2",
"type": "n8n-nodes-base.stickyNote",
"position": [
480,
240
],
"parameters": {
"color": 7,
"width": 380,
"height": 200,
"content": "根据前一个节点提供的索引动态连接 LLM。"
},
"typeVersion": 1
},
{
"id": "66066bad-4fd3-4e68-88bb-0b95fd9a6e49",
"name": "便签3",
"type": "n8n-nodes-base.stickyNote",
"position": [
980,
60
],
"parameters": {
"color": 7,
"width": 220,
"height": 260,
"content": "检查 LangChain 代码节点是否遇到错误。_当前仅支持主节点的错误输出_"
},
"typeVersion": 1
},
{
"id": "b9101226-0035-4de3-8720-f783d13e0cca",
"name": "便签说明4",
"type": "n8n-nodes-base.stickyNote",
"position": [
600,
0
],
"parameters": {
"color": 7,
"width": 380,
"height": 240,
"content": "根据客户投诉生成礼貌的回复。"
},
"typeVersion": 1
},
{
"id": "ee7d70ee-2eb7-494f-ad74-2cb6108ba0ed",
"name": "便签说明5",
"type": "n8n-nodes-base.stickyNote",
"position": [
980,
-360
],
"parameters": {
"color": 7,
"width": 380,
"height": 220,
"content": "根据特定标准分析生成的回复。"
},
"typeVersion": 1
},
{
"id": "03bde6f5-27b1-4568-96fb-5ece77d7b2e5",
"name": "便签 6",
"type": "n8n-nodes-base.stickyNote",
"position": [
1360,
-280
],
"parameters": {
"color": 7,
"width": 220,
"height": 240,
"content": "增加索引以便在下次运行时选择下一个可用的 LLM"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "52381ffc-bdf4-4243-bc35-462dedb929bd",
"connections": {
"OpenAI 4o": {
"ai_languageModel": [
[
{
"node": "Switch Model",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"OpenAI o1": {
"ai_languageModel": [
[
{
"node": "Switch Model",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Switch Model": {
"ai_outputParser": [
[]
],
"ai_languageModel": [
[
{
"node": "Generate response",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Set LLM index": {
"main": [
[
{
"node": "Generate response",
"type": "main",
"index": 0
}
]
]
},
"OpenAI 4o-mini": {
"ai_languageModel": [
[
{
"node": "Switch Model",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Generate response": {
"main": [
[
{
"node": "Validate response",
"type": "main",
"index": 0
}
],
[
{
"node": "Check for expected error",
"type": "main",
"index": 0
}
]
]
},
"OpenAI Chat Model": {
"ai_languageModel": [
[
{
"node": "Validate response",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Validate response": {
"main": [
[
{
"node": "Return result",
"type": "main",
"index": 0
}
],
[
{
"node": "Increase LLM index",
"type": "main",
"index": 0
}
]
]
},
"Increase LLM index": {
"main": [
[
{
"node": "No Operation, do nothing",
"type": "main",
"index": 0
}
]
]
},
"Check for expected error": {
"main": [
[
{
"node": "Loop finished without results",
"type": "main",
"index": 0
}
],
[
{
"node": "Unexpected error",
"type": "main",
"index": 0
}
]
]
},
"No Operation, do nothing": {
"main": [
[
{
"node": "Set LLM index",
"type": "main",
"index": 0
}
]
]
},
"When chat message received": {
"main": [
[
{
"node": "Set LLM index",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
高级 - 工程, 构建模块, 人工智能
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
代理访问控制模板
使用Airtable和Telegram的AI代理访问控制(RBAC)
If
Set
Airtable
+13
36 节点Mario
工程
实时数据RAG系统
使用Supabase和Notion将大型文档插入向量数据库
Limit
Notion
Supabase
+14
34 节点Mario
构建模块
使用 OpenAI、Google Sheets、Jina AI 和 Slack 的 AI 驱动信息监控
基于AI的信息监控,集成OpenAI、Google Sheets、Jina AI和Slack
If
Set
Code
+10
31 节点Dataki
销售
与数据对话:将文本转换为 SQL 查询和可视化曲线
与数据对话:将文本转换为 SQL 查询和可视化曲线
If
Set
Merge
+12
36 节点hippolyte-hu
工程
使用OpenAI和RAGAS方法评估AI代理响应正确性
使用OpenAI和RAGAS方法评估AI代理响应正确性
Set
Code
Merge
+12
27 节点Jimleuk
工程
使用OpenAI和余弦相似度评估AI代理响应相关性
使用OpenAI和余弦相似度评估AI代理响应相关性
Set
Code
Evaluation
+9
20 节点Jimleuk
工程
工作流信息
难度等级
高级
节点数量22
分类3
节点类型9
作者
Mario
@octionicWorkflow Optimization Expert | Software Architect. Use my link to book an initial consultation for custom built workflows using n8n.
外部链接
在 n8n.io 查看 →
分享此工作流