8
n8n 中文网amn8n.com

法律案例研究提取器,使用Bright Data MCP和Google Gemini的数据挖掘器

高级

这是一个AI, IT Ops领域的自动化工作流,包含 22 个节点。主要使用 Set, Code, Wait, Function, McpClient 等节点,结合人工智能技术实现智能自动化。 法律案例研究提取器,使用Bright Data MCP和Google Gemini的数据挖掘器

前置要求
  • 可能需要目标 API 的认证凭证
  • Google Gemini API Key
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
  "id": "Qgx75aQeRKXKtqm7",
  "meta": {
    "instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
    "templateCredsSetupCompleted": true
  },
  "name": "法律案例研究提取器,使用 Bright Data MCP 和 Google Gemini 的数据挖掘器",
  "tags": [
    {
      "id": "ZOwtAMLepQaGW76t",
      "name": "Building Blocks",
      "createdAt": "2025-04-13T15:23:40.462Z",
      "updatedAt": "2025-04-13T15:23:40.462Z"
    },
    {
      "id": "ddPkw7Hg5dZhQu2w",
      "name": "AI",
      "createdAt": "2025-04-13T05:38:08.053Z",
      "updatedAt": "2025-04-13T05:38:08.053Z"
    }
  ],
  "nodes": [
    {
      "id": "9e9a27ce-b95c-4ecd-b3c4-97aba420ce45",
      "name": "点击“测试工作流”时",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -520,
        140
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "3f9e30b5-7eb3-454d-a831-07be51f7a326",
      "name": "便签",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -60,
        40
      ],
      "parameters": {
        "color": 4,
        "width": 440,
        "height": 320,
        "content": "## Bright Data 法律案例研究爬虫"
      },
      "typeVersion": 1
    },
    {
      "id": "8f1934bf-ccec-4b25-b6cc-7607dcbdf798",
      "name": "列出 Bright Data 的所有工具",
      "type": "n8n-nodes-mcp.mcpClient",
      "position": [
        -300,
        140
      ],
      "parameters": {},
      "credentials": {
        "mcpClientApi": {
          "id": "JtatFSfA2kkwctYa",
          "name": "MCP Client (STDIO) account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "f8c4804a-85ad-462c-913d-e0bc5242bc74",
      "name": "为 LinkedIn 公司信息提取创建二进制数据",
      "type": "n8n-nodes-base.function",
      "position": [
        2440,
        60
      ],
      "parameters": {
        "functionCode": "items[0].binary = {\n  data: {\n    data: new Buffer(JSON.stringify(items[0].json, null, 2)).toString('base64')\n  }\n};\nreturn items;"
      },
      "typeVersion": 1
    },
    {
      "id": "c616db9f-fcf3-4f9d-b60f-a16c9da89456",
      "name": "便签 2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1220,
        -180
      ],
      "parameters": {
        "width": 440,
        "height": 120,
        "content": "## 免责声明"
      },
      "typeVersion": 1
    },
    {
      "id": "048c1093-ea88-441c-98fa-a2d003ab6b8d",
      "name": "设置法律案例研究 URL",
      "type": "n8n-nodes-base.set",
      "position": [
        -20,
        140
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "214e61a0-3587-453f-baf5-eac013990857",
              "name": "url",
              "type": "string",
              "value": "https://www.courtlistener.com/?q=IT%20laws%20for%20cyber%20crime&type=o&order_by=dateFiled%20desc&stat_Published=on"
            },
            {
              "id": "45014942-0a2e-4f46-b395-f82f97bfa93e",
              "name": "webhook_url",
              "type": "string",
              "value": "https://webhook.site/7b5380a0-0544-48dc-be43-0116cb2d52c2"
            },
            {
              "id": "bf011e1f-7032-49db-8f25-31ec4c35b9c5",
              "name": "base_url",
              "type": "string",
              "value": "https://www.courtlistener.com"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "8dc0a8cd-e4d9-4252-9dd2-94ee95d698e9",
      "name": "用于法律案例研究的 Bright Data MCP 客户端",
      "type": "n8n-nodes-mcp.mcpClient",
      "notes": "Scrape a single webpage URL with advanced options for content extraction and get back the results in MarkDown language.",
      "position": [
        200,
        140
      ],
      "parameters": {
        "toolName": "scrape_as_html",
        "operation": "executeTool",
        "toolParameters": "={\n   \"url\": \"{{ $json.url }}\"\n} "
      },
      "credentials": {
        "mcpClientApi": {
          "id": "JtatFSfA2kkwctYa",
          "name": "MCP Client (STDIO) account"
        }
      },
      "notesInFlow": true,
      "typeVersion": 1
    },
    {
      "id": "f3ea0d19-703b-4f99-955c-122162065363",
      "name": "案例提取器",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        600,
        140
      ],
      "parameters": {
        "text": "=Extract the content in a structured format. Here's the content : {{ $json.result.content[0].text }}",
        "messages": {
          "messageValues": [
            {
              "message": "You are an expert structured data extractor"
            }
          ]
        },
        "promptType": "define",
        "hasOutputParser": true
      },
      "retryOnFail": true,
      "typeVersion": 1.6
    },
    {
      "id": "a3fe5ce7-3a91-459d-8ef8-17a06fbef12a",
      "name": "结构化输出解析器",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        800,
        360
      ],
      "parameters": {
        "jsonSchemaExample": "[{\n\"Id\": \"\",\n\"Link\" : \"\",\n\"Title\": \n\"United States v. IXCOLGONZALEZ\"\n}]"
      },
      "typeVersion": 1.2
    },
    {
      "id": "5fd6d0a3-46ca-4184-bc5c-dfc0966f0538",
      "name": "遍历项目",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        1320,
        140
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 3
    },
    {
      "id": "74a02ac0-859d-4611-aeb0-021a654c92b8",
      "name": "循环内用于法律案例研究的 Bright Data MCP 客户端",
      "type": "n8n-nodes-mcp.mcpClient",
      "notes": "Scrape a single webpage URL with advanced options for content extraction and get back the results in MarkDown language.",
      "position": [
        1860,
        160
      ],
      "parameters": {
        "toolName": "scrape_as_html",
        "operation": "executeTool",
        "toolParameters": "={\n   \"url\": \"{{ $('Set the Legal Case Research URL').item.json.base_url }}/{{ $json.Link }}\"\n} "
      },
      "credentials": {
        "mcpClientApi": {
          "id": "JtatFSfA2kkwctYa",
          "name": "MCP Client (STDIO) account"
        }
      },
      "notesInFlow": true,
      "typeVersion": 1
    },
    {
      "id": "beb67c30-dd39-4c7d-94f8-853410dec09b",
      "name": "循环内 HTML 到文本数据提取",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        2080,
        160
      ],
      "parameters": {
        "text": "=Extract html to textual content  {{ $json.result.content[0].text }}",
        "promptType": "define"
      },
      "retryOnFail": true,
      "typeVersion": 1.6
    },
    {
      "id": "b7fc74e5-4165-4b1a-9c0a-27565302c0e1",
      "name": "循环内 HTML 到文本数据提取的 Webhook 通知",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        2440,
        260
      ],
      "parameters": {
        "url": "={{ $('Set the Legal Case Research URL').item.json.webhook_url }}",
        "options": {},
        "sendBody": true,
        "contentType": "multipart-form-data",
        "bodyParameters": {
          "parameters": [
            {
              "name": "case_content",
              "value": "={{ $json.text }}"
            }
          ]
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "07b78de1-fdc8-4233-a231-37258fa5d1f0",
      "name": "将案例内容写入磁盘",
      "type": "n8n-nodes-base.readWriteFile",
      "position": [
        2700,
        60
      ],
      "parameters": {
        "options": {},
        "fileName": "=d:\\Case-{{ $('Loop Over Items').item.json['Id'] }}.json",
        "operation": "write"
      },
      "typeVersion": 1
    },
    {
      "id": "ff687082-9e3d-4043-9aa6-29e3029499d4",
      "name": "用于案例数据提取的 Google Gemini 聊天模型",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        580,
        360
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "0057d772-732e-4e47-8ab8-eebe140df692",
      "name": "输出案例集合的代码",
      "type": "n8n-nodes-base.code",
      "position": [
        980,
        140
      ],
      "parameters": {
        "jsCode": "\nreturn $input.first().json.output"
      },
      "typeVersion": 2
    },
    {
      "id": "c843170b-e360-4eea-853c-ef38c9f3affe",
      "name": "循环内用于 HTML 到文本数据提取的 Google Gemini 聊天模型",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        2100,
        360
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "90f4670a-1fca-4826-9017-64a31f29cbc2",
      "name": "便签 1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1220,
        0
      ],
      "parameters": {
        "color": 5,
        "width": 1660,
        "height": 520,
        "content": "## Bright Data 法律案例研究爬虫"
      },
      "typeVersion": 1
    },
    {
      "id": "58aac68b-2598-465b-ab3c-f5c0ebcdb595",
      "name": "便签 4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -60,
        -260
      ],
      "parameters": {
        "color": 5,
        "width": 440,
        "height": 220,
        "content": "## LLM 使用情况"
      },
      "typeVersion": 1
    },
    {
      "id": "14bbbc73-06cd-4513-b9e6-2aebb5009c3d",
      "name": "便签 5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -580,
        -860
      ],
      "parameters": {
        "color": 7,
        "width": 400,
        "height": 400,
        "content": "## 徽标"
      },
      "typeVersion": 1
    },
    {
      "id": "96d74c50-074e-4b83-9422-ff2ce56bd55d",
      "name": "便签 3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -580,
        -360
      ],
      "parameters": {
        "width": 400,
        "height": 320,
        "content": "## 注意"
      },
      "typeVersion": 1
    },
    {
      "id": "08c6a217-5773-4ebc-ba6e-326de99e90e5",
      "name": "等待",
      "type": "n8n-nodes-base.wait",
      "position": [
        1580,
        160
      ],
      "webhookId": "65c9fcd3-2c82-4bdd-80b6-271d65b7f61a",
      "parameters": {
        "amount": 10
      },
      "typeVersion": 1.1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "03af01f8-7276-4c3c-a610-6532f0d51ef7",
  "connections": {
    "Wait": {
      "main": [
        [
          {
            "node": "Bright Data MCP Client For Legal Case Research Within Loop",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Case Extractor": {
      "main": [
        [
          {
            "node": "Code to output the collection of cases",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Loop Over Items": {
      "main": [
        [],
        [
          {
            "node": "Wait",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Structured Output Parser": {
      "ai_outputParser": [
        [
          {
            "node": "Case Extractor",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "List all tools for Bright Data": {
      "main": [
        [
          {
            "node": "Set the Legal Case Research URL",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Write the case content to disk": {
      "main": [
        []
      ]
    },
    "Set the Legal Case Research URL": {
      "main": [
        [
          {
            "node": "Bright Data MCP Client For Legal Case Research",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "When clicking ‘Test workflow’": {
      "main": [
        [
          {
            "node": "List all tools for Bright Data",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Code to output the collection of cases": {
      "main": [
        [
          {
            "node": "Loop Over Items",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "HTML to Textual Data Extract Within Loop": {
      "main": [
        [
          {
            "node": "Create a binary data for LinkedIn company info extract",
            "type": "main",
            "index": 0
          },
          {
            "node": "Webhook Notification for HTML to Textual Data Extract Within the Loop",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Bright Data MCP Client For Legal Case Research": {
      "main": [
        [
          {
            "node": "Case Extractor",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Google Gemini Chat Model For Case Data Extract": {
      "ai_languageModel": [
        [
          {
            "node": "Case Extractor",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Create a binary data for LinkedIn company info extract": {
      "main": [
        [
          {
            "node": "Write the case content to disk",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Bright Data MCP Client For Legal Case Research Within Loop": {
      "main": [
        [
          {
            "node": "HTML to Textual Data Extract Within Loop",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Webhook Notification for HTML to Textual Data Extract Within the Loop": {
      "main": [
        [
          {
            "node": "Loop Over Items",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Google Gemini Chat Model for HTML to Textual Data Extract Within the Loop": {
      "ai_languageModel": [
        [
          {
            "node": "HTML to Textual Data Extract Within Loop",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    }
  }
}
常见问题

如何使用这个工作流?

复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。

这个工作流适合什么场景?

高级 - 人工智能, IT 运维

需要付费吗?

本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。

工作流信息
难度等级
高级
节点数量22
分类2
节点类型13
难度说明

适合高级用户,包含 16+ 个节点的复杂工作流

作者
Ranjan Dailata

Ranjan Dailata

@ranjancse

A Professional based out of India specialized in handling AI-powered automations. Contact me at ranjancse@gmail.com

外部链接
在 n8n.io 查看

分享此工作流