提升您的网站流量
高级
这是一个Content Creation, Multimodal AI领域的自动化工作流,包含 26 个节点。主要使用 Set, Code, Filter, SplitOut, Supabase 等节点。 Claude AI、Scrapeless与竞品分析的自动化SEO内容引擎
前置要求
- •Supabase URL 和 API Key
- •Google Sheets API 凭证
- •Anthropic API Key
使用的节点 (26)
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "GplbQFeRZyqX2NA4",
"meta": {
"instanceId": "4adf7adc778b6fa0956bc5ac200936397d0bc0e9e60b5812a6244d74430458fb",
"templateCredsSetupCompleted": true
},
"name": "提升您的网站流量",
"tags": [],
"nodes": [
{
"id": "fa5ca22d-770f-4c80-98eb-0405893dbd80",
"name": "当点击“执行工作流”时",
"type": "n8n-nodes-base.manualTrigger",
"position": [
1740,
380
],
"parameters": {},
"typeVersion": 1
},
{
"id": "c7054514-9c58-43da-bcab-c7995572c92e",
"name": "Google趋势",
"type": "n8n-nodes-scrapeless.scrapeless",
"position": [
2200,
380
],
"parameters": {
"q": "={{ $json.seedKeyword }}",
"cat": "0",
"geo": "US",
"data_type": "related_queries",
"operation": "googleTrends"
},
"credentials": {
"scrapelessApi": {
"id": "p5QkIKUqqFeC0QkF",
"name": "Scrapeless account"
}
},
"typeVersion": 1
},
{
"id": "7c23aa97-3b95-48e1-8c69-347f13edec67",
"name": "分离输出",
"type": "n8n-nodes-base.splitOut",
"position": [
2400,
380
],
"parameters": {
"options": {},
"fieldToSplitOut": "related_queries.top"
},
"typeVersion": 1
},
{
"id": "390265e4-7a00-429b-8840-bc1c673f535c",
"name": "结构化输出解析器",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
3080,
580
],
"parameters": {
"jsonSchemaExample": "{\n \"data_interpretation\": \"Your English data interpretation text\",\n \"trends_status\": \"Steady rise\",\n \"recommended_priority\": \"P1 - Priority layout\",\n \"keyword\": \"current input search query word\"\n}"
},
"typeVersion": 1.3
},
{
"id": "71c12312-ddb4-4f28-9691-89ba6a0b400b",
"name": "便签",
"type": "n8n-nodes-base.stickyNote",
"position": [
1660,
280
],
"parameters": {
"width": 2000,
"height": 480,
"content": "# 第一阶段:热门话题"
},
"typeVersion": 1
},
{
"id": "7a3428a3-40f5-4187-b87b-12660aea38bb",
"name": "便签1",
"type": "n8n-nodes-base.stickyNote",
"position": [
1660,
800
],
"parameters": {
"color": 4,
"width": 2000,
"height": 520,
"content": "# 第二阶段:竞争内容研究"
},
"typeVersion": 1
},
{
"id": "7be65bd3-b577-457c-ac63-7673fb73981a",
"name": "爬取",
"type": "n8n-nodes-scrapeless.scrapeless",
"position": [
3060,
1000
],
"parameters": {
"url": "={{ $json.link }}",
"resource": "crawler",
"operation": "crawl"
},
"credentials": {
"scrapelessApi": {
"id": "p5QkIKUqqFeC0QkF",
"name": "Scrapeless account"
}
},
"typeVersion": 1
},
{
"id": "dfc7c9f9-2875-4fe8-9f08-0a10c49a1a52",
"name": "拆分输出2",
"type": "n8n-nodes-base.splitOut",
"position": [
2880,
1000
],
"parameters": {
"options": {},
"fieldToSplitOut": "organic_results"
},
"typeVersion": 1
},
{
"id": "146cc5c4-95df-4afa-89ab-9d96f384e6a9",
"name": "聚合",
"type": "n8n-nodes-base.aggregate",
"position": [
1740,
1520
],
"parameters": {
"options": {},
"fieldsToAggregate": {
"fieldToAggregate": [
{
"fieldToAggregate": "markdown"
}
]
}
},
"typeVersion": 1
},
{
"id": "139aa86a-ea2d-462b-b35c-b1e09d7e87f2",
"name": "代码",
"type": "n8n-nodes-base.code",
"position": [
2420,
1520
],
"parameters": {
"jsCode": "// Get the output item of the previous node (AI Agent)\n// We assume that the AI Agent only outputs one result\nconst item = $input.first();\nconst rawOutput = item.json.output;\n\ntry {\n// Step 1: Clean the string and extract the pure JSON part\n// AI output is usually wrapped with ```json ... ```\nconst startIndex = rawOutput.indexOf('{');\nconst endIndex = rawOutput.lastIndexOf('}');\n\n// Throw an error if no valid JSON brackets are found\nif (startIndex === -1 || endIndex === -1) {\nthrow new Error(\"No valid JSON object found in AI output.\");\n}\n\nconst jsonString = rawOutput.slice(startIndex, endIndex + 1);\n\n// Step 2: Parse the cleaned string into a real JavaScript object\nconst parsedData = JSON.parse(jsonString);\n\n// Steps 3: Build a new, flattened output object ready for storage\nconst result = {\ntitle: parsedData.title,\nslug: parsedData.slug,\nmeta_description: parsedData.meta_description,\n\n// Key step: Processing JSONB fields\n// Convert JS objects/arrays back to JSON strings for proper processing by the Supabase node\nstrategy_summary: JSON.stringify(parsedData.strategy_summary),\nbody: JSON.stringify(parsedData.article_body),\n};\n\n// Step 4: Return the processed result as the output of this node\n// n8n expects an array of objects to be returned\nreturn [{\njson: result\n}];\n\n} catch (error) {\n// If parsing fails, print an error to n8n's execution log and terminate the workflow\nconsole.error(\"JSON parsing failed:\", error);\nconsole.error(\"Raw AI output:\", rawOutput);\nthrow new Error(\"Unable to parse the JSON data returned by AI, please check the output of the AI Agent node.\");\n}"
},
"typeVersion": 2
},
{
"id": "696d1194-9763-4d90-bac8-f32c3733f786",
"name": "便签2",
"type": "n8n-nodes-base.stickyNote",
"position": [
1660,
1360
],
"parameters": {
"color": 3,
"width": 2000,
"height": 520,
"content": "# 第三阶段:完整SEO文章撰写并存储到数据库"
},
"typeVersion": 1
},
{
"id": "6046cbef-cda1-4e79-88bf-0e17a9d564d0",
"name": "Google搜索",
"type": "n8n-nodes-scrapeless.scrapeless",
"position": [
2500,
1000
],
"parameters": {
"q": "={{ $json['Related Keywords'] }}"
},
"credentials": {
"scrapelessApi": {
"id": "p5QkIKUqqFeC0QkF",
"name": "Scrapeless account"
}
},
"typeVersion": 1
},
{
"id": "de5767de-10d7-44f4-85f1-f3b61df78111",
"name": "设置种子关键词",
"type": "n8n-nodes-base.set",
"position": [
1960,
380
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "8eb6d611-0979-4ce4-aae6-22ae2098c1fe",
"name": "seedKeyword",
"type": "string",
"value": "Project Management"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "2915ce0d-8006-45fb-9233-a77ee4202f35",
"name": "Google趋势-获取热度数据",
"type": "n8n-nodes-scrapeless.scrapeless",
"position": [
2620,
380
],
"parameters": {
"q": "={{ $json.query }}",
"cat": "0",
"geo": "US",
"operation": "googleTrends"
},
"credentials": {
"scrapelessApi": {
"id": "p5QkIKUqqFeC0QkF",
"name": "Scrapeless account"
}
},
"typeVersion": 1
},
{
"id": "217812b3-ce4e-4fa6-9b31-86e789eb9bdd",
"name": "AI Agent",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
2860,
380
],
"parameters": {
"text": "=The following are the keywords for the topic:` {{ $json.parameters.q }}`\ntrends data:\n```\n{{ $json.interest_over_time.toJsonString() }}\n```",
"options": {
"systemMessage": "=Context & Role\nYou are a professional SEO content strategist. Your primary task is to interpret time series data from Google Trends to evaluate the market trend of a given keyword and provide a clear recommendation on content creation priority.\n\nYou only need to make 5 requests!\n\n### Task\n\nBased on the user-provided input data (a JSON object containing Google Trends timeline_data), analyze the popularity trend and return a JSON object with three fields—data_interpretation, trend_status, recommended_priority—strictly and keyword following the specified output format. \n\nPay attention to the data source of this keyword and directly take this value {{ $json.parameters.q }}\n\n### Rules\n\nYou must follow the rules below to determine trend_status and recommended_priority:\n1. Analyze the timeline_data array:\n• Split the time-series data roughly into two halves.\n•Compare the average popularity value of the second half with that of the first half.\n2. Determine trend_status — You must choose one of the following:\n• Breakout: If the data shows a dramatic spike at the latest time point that is significantly higher than the average level.\n• Rising: If the average popularity in the second half is significantly higher than in the first half (e.g., more than 20% higher).\n• Stable: If the averages of both halves are close, or if the data exhibits a regular cyclical pattern without a clear long-term upward or downward trend.\n• Falling: If the average popularity in the second half is significantly lower than in the first half.\n3. Determine recommended_priority — You must map this directly from the trend_status:\n• If trend_status is Breakout, then recommended_priority is P0 - Immediate Action.\n• If trend_status is Rising, then recommended_priority is P1 - High Priority.\n• If trend_status is Stable, then recommended_priority is P2 - Moderate Priority.\n• If trend_status is Falling, then recommended_priority is P3 - Low Priority.\n4. Write data_interpretation:\n• Use 1–2 short sentences in English to summarize your observation of the trend. For example: “This keyword shows a clear weekly cycle with dips on weekends and rises on weekdays, but overall the trend remains stable.” or “The keyword’s popularity has been rising steadily over the past month, indicating strong growth potential.”\n\n### Output Format\n\nRespond with only the JSON object, no extra text, no markdown, no code block, and no explanation."
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 2
},
{
"id": "fa7a38bb-54df-4ed1-b36b-258e915131da",
"name": "Anthropic 聊天模型",
"type": "@n8n/n8n-nodes-langchain.lmChatAnthropic",
"position": [
2800,
580
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "claude-sonnet-4-20250514",
"cachedResultName": "Claude Sonnet 4"
},
"options": {}
},
"credentials": {
"anthropicApi": {
"id": "onfXB2Zg7nbhjSIe",
"name": "Anthropic account"
}
},
"typeVersion": 1.3
},
{
"id": "ce2cabc1-a3a3-4ca2-a75a-50cc13a9c840",
"name": "筛选优先级高于P2的主题",
"type": "n8n-nodes-base.filter",
"position": [
2280,
1000
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "or",
"conditions": [
{
"id": "81225d05-b95d-41ed-996c-2b2ec86d499b",
"operator": {
"type": "string",
"operation": "notContains"
},
"leftValue": "={{ $json.Level }}",
"rightValue": "=P3"
}
]
}
},
"typeVersion": 2.2
},
{
"id": "e5af529a-76dc-48f0-9e2b-b98d87f399b6",
"name": "筛选TOP3竞争对手链接",
"type": "n8n-nodes-base.set",
"position": [
2700,
1000
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "eca6d648-6b06-4bf0-a139-6cb3d0344d15",
"name": "organic_results",
"type": "array",
"value": "={{ $json.organic_results.slice(0,3) }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "307c2432-0607-4c89-a502-07034e638744",
"name": "提取竞争对手内容Markdown",
"type": "n8n-nodes-base.set",
"position": [
3280,
1000
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "2e05ab20-a65b-4375-8745-0968069c603d",
"name": "markdown",
"type": "string",
"value": "={{ $json[0].markdown }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "7856b247-9bee-4a02-aa0c-f60f2ae4b942",
"name": "高级SEO内容写手",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1980,
1520
],
"parameters": {
"text": "=# Role & Objective\nYou are a senior SEO content writer at a SaaS company focused on “project management software.” Your core task is to write a complete, high-quality, and publish-ready SEO-optimized article based on the provided context.\n\n# Context & Data\n- Target Keyword: {{ $json.markdown }}\n- Your SaaS Product Name: SaaS Product\n- Latest Trend Insight: \"{{ $json.markdown }}\"\n- Competitor 1 (Top-ranked full content): \n\"\"\"\n{{ $json.markdown[0] }}\n\"\"\"\n- Competitor 2 (Top-ranked full content): \n\"\"\"\n{{ $json.markdown[1] }}\n\"\"\"\n- Competitor 3 (Top-ranked full content): \n\"\"\"\n{{ $json.markdown[2] }}\n\"\"\"\n\n# Your Task\nPlease use all the above information to write a complete article. You must:\n1. Analyze the competitors’ content deeply, learn from their strengths, and identify opportunities for differentiation.\n2. Integrate the trend insight naturally into the article to enhance its relevance and timeliness.\n3. Write the full content directly—do not give bullet points or outlines. Output full paragraphs only.\n4. Follow the exact structure below and output a well-formed JSON object with no additional explanation or extra text.\n\nUse the following strict JSON output format:\n{\n \"title\": \"An eye-catching SEO title including the target keyword\",\n \"slug\": \"a-keyword-rich-and-user-friendly-url-slug\",\n \"meta_description\": \"A ~150 character meta description that includes the keyword and a call to action.\",\n \"strategy_summary\": {\n \"key_trend_insight\": \"Summarize the key trend insight used in the article.\",\n \"content_angle\": \"Explain the unique content angle this article takes.\"\n },\n \"article_body\": [\n {\n \"type\": \"H2\",\n \"title\": \"This is the first H2 heading of the article\",\n \"content\": \"A rich, fluent, and informative paragraph related to this H2. Each paragraph should be 150–200 words and offer valuable insights beyond surface-level content.\"\n },\n {\n \"type\": \"H2\",\n \"title\": \"This is the second H2 heading\",\n \"content\": \"Deep dive into this sub-topic. Use data, examples, and practical analysis to ensure content depth and value.\"\n },\n {\n \"type\": \"H3\",\n \"title\": \"This is an H3 heading that refines the H2 topic above\",\n \"content\": \"Provide detailed elaboration under this H3, maintaining relevance to the H2.\"\n },\n {\n \"type\": \"H2\",\n \"title\": \"This third H2 could focus on how your product solves the problem\",\n \"content\": \"Explain how [Your SaaS Product] helps users address the issue discussed above. This section should be persuasive and naturally lead the reader to take action.\"\n }\n ]\n}",
"options": {},
"promptType": "define"
},
"typeVersion": 2
},
{
"id": "158b1928-4b08-4168-a9c2-695e1c0af9c8",
"name": "代码1",
"type": "n8n-nodes-base.code",
"position": [
3180,
420
],
"parameters": {
"jsCode": "// Loop over input items and add a new field called 'myNewField' to the JSON of each one\nconst level0 = []\nconst level1 = []\nconst level2 = []\nconst level3 = []\nfor (const item of $input.all()) {\n const itemData = item.json.output\n const level = itemData?.recommended_priority?.toLowerCase()\n if (level.includes('p0')) {\n level0.push(itemData)\n } else if (level.includes('p1')) {\n level1.push(itemData)\n } else if (level.includes('p2')) {\n level2.push(itemData)\n } else if (level.includes('p3')) {\n level3.push(itemData)\n } \n}\n\nreturn [\n ...level0,\n ...level1,\n ...level2,\n ...level3\n]"
},
"typeVersion": 2
},
{
"id": "76e1bcbc-f324-4e7c-a805-0496008c04dd",
"name": "在表格中追加或更新行",
"type": "n8n-nodes-base.googleSheets",
"position": [
3380,
440
],
"parameters": {
"columns": {
"value": {
"Level": "={{ $json.recommended_priority }}",
"Reason": "={{ $json.data_interpretation }}",
"Seed Keywords": "={{ $('Set seed keywords').item.json.seedKeyword }}",
"Related Keywords": "={{ $json.keyword }}"
},
"schema": [
{
"id": "Seed Keywords",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Seed Keywords",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Related Keywords",
"type": "string",
"display": true,
"required": false,
"displayName": "Related Keywords",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Reason",
"type": "string",
"display": true,
"required": false,
"displayName": "Reason",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Level",
"type": "string",
"display": true,
"required": false,
"displayName": "Level",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"Seed Keywords"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "appendOrUpdate",
"sheetName": {
"__rl": true,
"mode": "list",
"value": 1854560811,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Thz1cfH3CdsqvJmt5TiYSNtjLZm7lSLZ50MAYjU6Q94/edit#gid=1854560811",
"cachedResultName": "sheet1"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1Thz1cfH3CdsqvJmt5TiYSNtjLZm7lSLZ50MAYjU6Q94",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Thz1cfH3CdsqvJmt5TiYSNtjLZm7lSLZ50MAYjU6Q94/edit?usp=drivesdk",
"cachedResultName": "Topics"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "JEBWZDzEgpbO56NP",
"name": "Google Sheets account 3"
}
},
"typeVersion": 4.6
},
{
"id": "47792fbd-1b6d-419e-b12a-9cb2d67a2b12",
"name": "拆分输出1",
"type": "n8n-nodes-base.splitOut",
"position": [
2060,
1000
],
"parameters": {
"include": "allOtherFields",
"options": {},
"fieldToSplitOut": "Level"
},
"typeVersion": 1
},
{
"id": "e3a45a94-01c9-4c89-90a2-34dcabf5ed53",
"name": "获取表格中的行",
"type": "n8n-nodes-base.googleSheets",
"position": [
1840,
1000
],
"parameters": {
"options": {},
"sheetName": {
"__rl": true,
"mode": "list",
"value": 1854560811,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Thz1cfH3CdsqvJmt5TiYSNtjLZm7lSLZ50MAYjU6Q94/edit#gid=1854560811",
"cachedResultName": "sheet1"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1Thz1cfH3CdsqvJmt5TiYSNtjLZm7lSLZ50MAYjU6Q94",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Thz1cfH3CdsqvJmt5TiYSNtjLZm7lSLZ50MAYjU6Q94/edit?usp=drivesdk",
"cachedResultName": "Topics"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "OV1bWpgbCPPtPJON",
"name": "Google Sheets account 4"
}
},
"typeVersion": 4.6
},
{
"id": "00843ad2-2209-4539-9e24-dfd980767b91",
"name": "Anthropic Chat Model1",
"type": "@n8n/n8n-nodes-langchain.lmChatAnthropic",
"position": [
1900,
1680
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "claude-sonnet-4-20250514",
"cachedResultName": "Claude Sonnet 4"
},
"options": {}
},
"credentials": {
"anthropicApi": {
"id": "onfXB2Zg7nbhjSIe",
"name": "Anthropic account"
}
},
"typeVersion": 1.3
},
{
"id": "cbd7133f-f4a4-4a77-9712-9dc3b49e4ea4",
"name": "创建行",
"type": "n8n-nodes-base.supabase",
"position": [
2700,
1520
],
"parameters": {
"tableId": "seo_articles",
"fieldsUi": {
"fieldValues": [
{
"fieldId": "title",
"fieldValue": "={{ $json.title }}"
},
{
"fieldId": "meta_description",
"fieldValue": "={{ $json.meta_description }}"
},
{
"fieldId": "body",
"fieldValue": "={{ $json.body }}"
},
{
"fieldId": "slug",
"fieldValue": "={{ $json.slug }}"
}
]
}
},
"credentials": {
"supabaseApi": {
"id": "JFpbUB03FPvtqgZC",
"name": "Supabase account 2"
}
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "c6198706-263f-45c6-8b35-19b84353a8fe",
"connections": {
"Code": {
"main": [
[
{
"node": "Create a row",
"type": "main",
"index": 0
}
]
]
},
"Code1": {
"main": [
[
{
"node": "Append or update row in sheet",
"type": "main",
"index": 0
}
]
]
},
"Crawl": {
"main": [
[
{
"node": "Extract competitor content Markdown",
"type": "main",
"index": 0
}
]
]
},
"AI Agent": {
"main": [
[
{
"node": "Code1",
"type": "main",
"index": 0
}
]
]
},
"Aggregate": {
"main": [
[
{
"node": "Senior SEO content writer",
"type": "main",
"index": 0
}
]
]
},
"Split Out": {
"main": [
[
{
"node": "Google Trends-Get heat data",
"type": "main",
"index": 0
}
]
]
},
"Split Out1": {
"main": [
[
{
"node": "Filter out topics with priority above P2",
"type": "main",
"index": 0
}
]
]
},
"Split Out2": {
"main": [
[
{
"node": "Crawl",
"type": "main",
"index": 0
}
]
]
},
"Google Search": {
"main": [
[
{
"node": "Filter TOP3 competitor links",
"type": "main",
"index": 0
}
]
]
},
"Google Trends": {
"main": [
[
{
"node": "Split Out",
"type": "main",
"index": 0
}
]
]
},
"Set seed keywords": {
"main": [
[
{
"node": "Google Trends",
"type": "main",
"index": 0
}
]
]
},
"Get row(s) in sheet": {
"main": [
[
{
"node": "Split Out1",
"type": "main",
"index": 0
}
]
]
},
"Anthropic Chat Model": {
"ai_languageModel": [
[
{
"node": "AI Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Anthropic Chat Model1": {
"ai_languageModel": [
[
{
"node": "Senior SEO content writer",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Structured Output Parser": {
"ai_outputParser": [
[
{
"node": "AI Agent",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"Senior SEO content writer": {
"main": [
[
{
"node": "Code",
"type": "main",
"index": 0
}
]
]
},
"Google Trends-Get heat data": {
"main": [
[
{
"node": "AI Agent",
"type": "main",
"index": 0
}
]
]
},
"Filter TOP3 competitor links": {
"main": [
[
{
"node": "Split Out2",
"type": "main",
"index": 0
}
]
]
},
"Append or update row in sheet": {
"main": [
[]
]
},
"Extract competitor content Markdown": {
"main": [
[
{
"node": "Aggregate",
"type": "main",
"index": 0
}
]
]
},
"When clicking ‘Execute workflow’": {
"main": [
[
{
"node": "Set seed keywords",
"type": "main",
"index": 0
},
{
"node": "Get row(s) in sheet",
"type": "main",
"index": 0
}
]
]
},
"Filter out topics with priority above P2": {
"main": [
[
{
"node": "Google Search",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
高级 - 内容创作, 多模态 AI
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
内容聚合
使用Gemini AI从网站文章自动化社交媒体帖子发布到LinkedIn和X/Twitter
If
Set
Xml
+16
34 节点Vadim
内容创作
内容生成器 v3
AI驱动博客自动化:使用GPT-4生成并发布SEO文章至WordPress和Twitter
If
Set
Code
+25
144 节点Jay Emp0
内容创作
使用OpenAI、RunwayML和ElevenLabs自动化无脸短视频
使用OpenAI、RunwayML和ElevenLabs自动化无脸短视频:从脚本到社交媒体
Set
Code
Wait
+18
56 节点LeeWei
内容创作
WordPress博客自动化专业版(深度研究)v2.1市场
使用GPT-4o、Perplexity AI和多语言支持自动化SEO优化的博客创建
If
Set
Xml
+27
125 节点Daniel Ng
内容创作
合并
使用Suno API、Claude和Telegram机器人创建完整的20首YouTube播放列表
If
Set
Code
+17
150 节点Joseph
内容创作
AI驱动的SEO博客编写器
使用Gemini、Scrapeless和Pinecone RAG生成SEO优化的博客内容
Set
Code
Html
+17
28 节点scrapeless official
内容创作