构建集成Claude、RAG、Perplexity和Drive的全源知识助手
高级
这是一个Internal Wiki, AI RAG领域的自动化工作流,包含 38 个节点。主要使用 Set, Switch, GoogleDrive, PostgresTool, ManualTrigger 等节点。 构建集成Claude、RAG、Perplexity和Drive的全源知识助手
前置要求
- •Google Drive API 凭证
- •PostgreSQL 数据库连接信息
- •OpenAI API Key
- •Anthropic API Key
- •Supabase URL 和 API Key
使用的节点 (38)
Set
Switch
StickyNote
GoogleDrive
PostgresTool
ManualTrigger
PerplexityTool
Agent
ExtractFromFile
GoogleDriveTool
OpenAi
ToolThink
McpTrigger
ChatTrigger
ToolWorkflow
ExecuteWorkflowTrigger
McpClientTool
RerankerCohere
LmChatAnthropic
EmbeddingsOpenAi
MemoryPostgresChat
VectorStoreSupabase
DocumentDefaultDataLoader
TextSplitterRecursiveCharacterTextSplitter
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"meta": {
"instanceId": "e7ccf4281d5afb175c79c02db95b45f15d5b53862cb6bc357c5e5bc26567f35c",
"templateCredsSetupCompleted": true
},
"nodes": [
{
"id": "ac90ca65-d732-4358-873a-1275a373bc51",
"name": "When chat message received",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
160,
0
],
"webhookId": "87d0712c-9ce3-4f5d-a715-8a1f5f1574c6",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "9ba4a3b5-5f26-4fe5-a6bd-0ba642d606dd",
"name": "Postgres Chat Memory",
"type": "@n8n/n8n-nodes-langchain.memoryPostgresChat",
"position": [
416,
352
],
"parameters": {},
"credentials": {
"postgres": {
"id": "44lwBYXMr6Vx0Fmq",
"name": "Postgres account"
}
},
"typeVersion": 1.3
},
{
"id": "46afb445-8969-4589-8168-6371859c33cd",
"name": "Embeddings OpenAI",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
1136,
560
],
"parameters": {
"options": {
"dimensions": 1536
}
},
"credentials": {
"openAiApi": {
"id": "OQJASLp1qn1StvpI",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "3afefc1e-e9ca-48ca-be50-288da37e3ac3",
"name": "Reranker Cohere",
"type": "@n8n/n8n-nodes-langchain.rerankerCohere",
"position": [
1296,
560
],
"parameters": {},
"credentials": {
"cohereApi": {
"id": "PCdrjFiCsNkbtU2E",
"name": "CohereApi account"
}
},
"typeVersion": 1
},
{
"id": "c4773b42-0af6-40d0-8700-f13e35c7d446",
"name": "Anthropic Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatAnthropic",
"position": [
240,
352
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "claude-sonnet-4-20250514",
"cachedResultName": "Claude 4 Sonnet"
},
"options": {}
},
"credentials": {
"anthropicApi": {
"id": "k6Lnp9bVLzT5z85i",
"name": "Anthropic account"
}
},
"typeVersion": 1.3
},
{
"id": "98588524-2d9d-473f-b3be-94cc6cd2ccce",
"name": "structured data",
"type": "n8n-nodes-base.postgresTool",
"position": [
848,
416
],
"parameters": {
"table": {
"__rl": true,
"mode": "name",
"value": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('Table', ``, 'string') }}"
},
"schema": {
"__rl": true,
"mode": "list",
"value": "public"
},
"columns": {
"value": {},
"schema": [
{
"id": "Keyword",
"type": "string",
"display": true,
"required": true,
"displayName": "Keyword",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Avg monthly searches",
"type": "number",
"display": true,
"removed": true,
"required": false,
"displayName": "Avg monthly searches",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Competition",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Competition",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Competition indexed value",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Competition indexed value",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Low range bid",
"type": "number",
"display": true,
"removed": true,
"required": false,
"displayName": "Low range bid",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "High range bid",
"type": "number",
"display": true,
"removed": true,
"required": false,
"displayName": "High range bid",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Score",
"type": "number",
"display": true,
"removed": true,
"required": false,
"displayName": "Score",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Base score",
"type": "number",
"display": true,
"removed": true,
"required": false,
"displayName": "Base score",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "cpc median",
"type": "number",
"display": true,
"removed": true,
"required": false,
"displayName": "cpc median",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "n chars",
"type": "number",
"display": true,
"removed": true,
"required": false,
"displayName": "n chars",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "relevance bonus",
"type": "number",
"display": true,
"removed": true,
"required": false,
"displayName": "relevance bonus",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Scored?",
"type": "boolean",
"display": true,
"removed": true,
"required": false,
"displayName": "Scored?",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Primary used",
"type": "number",
"display": true,
"removed": true,
"required": false,
"displayName": "Primary used",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Secondary used?",
"type": "number",
"display": true,
"removed": true,
"required": false,
"displayName": "Secondary used?",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "autoMapInputData",
"matchingColumns": [],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {}
},
"credentials": {
"postgres": {
"id": "44lwBYXMr6Vx0Fmq",
"name": "Postgres account"
}
},
"typeVersion": 2.6
},
{
"id": "fab6ed46-4d14-4c88-9bce-4e013ef4ac54",
"name": "General knowledge",
"type": "@n8n/n8n-nodes-langchain.vectorStoreSupabase",
"position": [
1168,
400
],
"parameters": {
"mode": "retrieve-as-tool",
"options": {},
"tableName": {
"__rl": true,
"mode": "list",
"value": "danelfin",
"cachedResultName": "danelfin"
},
"useReranker": true,
"toolDescription": "Acces information About (YOUR COMPANY)"
},
"credentials": {
"supabaseApi": {
"id": "4TXwWjRCifw2A3yw",
"name": "Supabase tm"
}
},
"typeVersion": 1.3
},
{
"id": "42e3436f-8f91-4ef0-a110-8ed6c8476758",
"name": "When clicking ‘Execute workflow’",
"type": "n8n-nodes-base.manualTrigger",
"position": [
144,
-688
],
"parameters": {},
"typeVersion": 1
},
{
"id": "40f20edf-04f5-42b3-9bbb-05bb649909bf",
"name": "Download file",
"type": "n8n-nodes-base.googleDrive",
"position": [
352,
-688
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "list",
"value": "1B10ODCBzQixzx1wxfA1Nsrnz8a8o2vzV",
"cachedResultUrl": "https://drive.google.com/file/d/1B10ODCBzQixzx1wxfA1Nsrnz8a8o2vzV/view?usp=drivesdk",
"cachedResultName": "1.0.zip"
},
"options": {},
"operation": "download"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "ZLXSLAtUFlQgPXhb",
"name": "Google Drive account 2"
}
},
"typeVersion": 3
},
{
"id": "40f0eb51-de45-49bc-b05d-23bc5876e936",
"name": "Default Data Loader1",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
704,
-464
],
"parameters": {
"options": {},
"dataType": "binary",
"textSplittingMode": "custom"
},
"typeVersion": 1.1
},
{
"id": "de72b0ca-7f48-46dd-9220-f2406ee8070c",
"name": "Recursive Character Text Splitter1",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
784,
-256
],
"parameters": {
"options": {}
},
"typeVersion": 1
},
{
"id": "fd2df44b-12e9-40f2-a0e7-29e914c101bf",
"name": "Add to Supabase Vector DB",
"type": "@n8n/n8n-nodes-langchain.vectorStoreSupabase",
"position": [
592,
-688
],
"parameters": {
"mode": "insert",
"options": {},
"tableName": {
"__rl": true,
"mode": "list",
"value": "danelfin",
"cachedResultName": "danelfin"
}
},
"credentials": {
"supabaseApi": {
"id": "4TXwWjRCifw2A3yw",
"name": "Supabase tm"
}
},
"typeVersion": 1.3
},
{
"id": "c6831a2b-cbb5-4912-8974-b82f8775d4e7",
"name": "Embeddings OpenAI1",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
576,
-464
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "OQJASLp1qn1StvpI",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "eb4b1d52-5b49-42d1-b65d-881c23d549da",
"name": "Think",
"type": "@n8n/n8n-nodes-langchain.toolThink",
"position": [
576,
352
],
"parameters": {
"description": "Use the tool to think about the user query and the actual data extracted."
},
"typeVersion": 1
},
{
"id": "425e6a03-b840-44d3-bd9e-b414f4dcfa8f",
"name": "Sticky Note3",
"type": "n8n-nodes-base.stickyNote",
"position": [
1664,
-48
],
"parameters": {
"color": 5,
"width": 380,
"height": 100,
"content": "### Always Authenticate Your Server!\nBefore going to production, it's always advised to enable authentication on your MCP server trigger."
},
"typeVersion": 1
},
{
"id": "1f269b19-3bb3-4bc4-9eb5-e46b8a50bf77",
"name": "When Executed by Another Workflow",
"type": "n8n-nodes-base.executeWorkflowTrigger",
"position": [
2112,
448
],
"parameters": {
"workflowInputs": {
"values": [
{
"name": "operation"
},
{
"name": "folderId"
},
{
"name": "fileId"
}
]
}
},
"typeVersion": 1.1
},
{
"id": "9d2d569d-366a-47a8-8919-8ee100bbe11d",
"name": "Google Drive MCP Server",
"type": "@n8n/n8n-nodes-langchain.mcpTrigger",
"position": [
1712,
64
],
"webhookId": "a289c719-fb71-4b08-97c6-79d12645dc7e",
"parameters": {
"path": "a289c719-fb71-4b08-97c6-79d12645dc7e"
},
"typeVersion": 1
},
{
"id": "bd3b79b3-3080-4e72-8091-5baaa1f17388",
"name": "Download File1",
"type": "n8n-nodes-base.googleDrive",
"position": [
2464,
448
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "id",
"value": "={{ $json.fileId }}"
},
"options": {
"googleFileConversion": {
"conversion": {
"docsToFormat": "text/plain",
"slidesToFormat": "application/pdf"
}
}
},
"operation": "download"
},
"typeVersion": 3
},
{
"id": "c6e7ed75-10b7-4be6-b398-0c5172daf9f9",
"name": "FileType",
"type": "n8n-nodes-base.switch",
"position": [
2656,
400
],
"parameters": {
"rules": {
"values": [
{
"outputKey": "pdf",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "7b6958ce-d553-4379-a5d6-743f39b342d0",
"operator": {
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $binary.data.mimeType }}",
"rightValue": "application/pdf"
}
]
},
"renameOutput": true
},
{
"outputKey": "csv",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "d0816a37-ac06-49e3-8d63-17fcd061e33f",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $binary.data.mimeType }}",
"rightValue": "text/csv"
}
]
},
"renameOutput": true
},
{
"outputKey": "image",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "589540e1-1439-41e3-ba89-b27f5e936190",
"operator": {
"type": "boolean",
"operation": "true",
"singleValue": true
},
"leftValue": "={{\n[\n 'image/jpeg',\n 'image/jpg',\n 'image/png',\n 'image/gif'\n].some(mimeType => $binary.data.mimeType === mimeType)\n}}",
"rightValue": ""
}
]
},
"renameOutput": true
},
{
"outputKey": "audio",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "b8fc61a1-6057-4db3-960e-b8ddcbdd0f31",
"operator": {
"type": "string",
"operation": "contains"
},
"leftValue": "={{ $binary.data.mimeType }}",
"rightValue": "audio"
}
]
},
"renameOutput": true
},
{
"outputKey": "video",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "959d65a6-372f-4978-b2d1-f28aa1e372c6",
"operator": {
"type": "string",
"operation": "contains"
},
"leftValue": "={{ $binary.data.mimeType }}",
"rightValue": "video"
}
]
},
"renameOutput": true
}
]
},
"options": {}
},
"typeVersion": 3.2
},
{
"id": "af4a67ae-e328-4aa8-80fe-104ef97db2e0",
"name": "Operation",
"type": "n8n-nodes-base.switch",
"position": [
2288,
448
],
"parameters": {
"rules": {
"values": [
{
"outputKey": "ReadFile",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "b03bb746-dc4e-469c-b8e6-a34c0aa8d0a6",
"operator": {
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json.operation }}",
"rightValue": "readFile"
}
]
},
"renameOutput": true
}
]
},
"options": {}
},
"typeVersion": 3.2
},
{
"id": "9097988d-c8a4-47d3-a202-7108e967087d",
"name": "Extract from PDF",
"type": "n8n-nodes-base.extractFromFile",
"position": [
2928,
160
],
"parameters": {
"options": {},
"operation": "pdf"
},
"typeVersion": 1
},
{
"id": "884950de-d4d6-4c86-b56c-c97dbc54e9aa",
"name": "Extract from CSV",
"type": "n8n-nodes-base.extractFromFile",
"position": [
2928,
352
],
"parameters": {
"options": {
"encoding": "utf-8",
"headerRow": false,
"relaxQuotes": true,
"includeEmptyCells": true
}
},
"typeVersion": 1
},
{
"id": "04d9c541-5f77-4891-bef8-e2fb7b6a4fa7",
"name": "Get PDF Response",
"type": "n8n-nodes-base.set",
"position": [
3088,
160
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "a481cde3-b8ec-4d97-aa13-4668bd66c24d",
"name": "response",
"type": "string",
"value": "={{ $json.text }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "68455a41-eb83-4435-bd16-41660100a544",
"name": "Get CSV Response",
"type": "n8n-nodes-base.set",
"position": [
3088,
352
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "a481cde3-b8ec-4d97-aa13-4668bd66c24d",
"name": "response",
"type": "string",
"value": "={{\n$input.all()\n .map(item => item.json.row.map(cell => `\"${cell}\"`).join(','))\n .join('\\n')\n}}"
}
]
}
},
"executeOnce": true,
"typeVersion": 3.4
},
{
"id": "d7914110-a00d-429a-83c5-f616a42279de",
"name": "Read File From GDrive",
"type": "@n8n/n8n-nodes-langchain.toolWorkflow",
"position": [
1968,
256
],
"parameters": {
"name": "ReadFile",
"workflowId": {
"__rl": true,
"mode": "id",
"value": "={{ $workflow.id }}"
},
"description": "Call this tool to download and read the contents of a file within google drive.",
"workflowInputs": {
"value": {
"fileId": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('fileId', ``, 'string') }}",
"folderId": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('folderId', ``, 'string') }}",
"operation": "readFile"
},
"schema": [
{
"id": "operation",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "operation",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "folderId",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "folderId",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "fileId",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "fileId",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [],
"attemptToConvertTypes": false,
"convertFieldsToString": false
}
},
"typeVersion": 2.1
},
{
"id": "fe6779a1-b38d-41f1-97ec-d4502627d538",
"name": "Search Files from Gdrive",
"type": "n8n-nodes-base.googleDriveTool",
"position": [
1776,
288
],
"parameters": {
"limit": 10,
"filter": {
"driveId": {
"mode": "list",
"value": "My Drive"
},
"whatToSearch": "files"
},
"options": {},
"resource": "fileFolder",
"queryString": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('Search_Query', ``, 'string') }}"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "ZLXSLAtUFlQgPXhb",
"name": "Google Drive account 2"
}
},
"typeVersion": 3
},
{
"id": "63050b0b-f63c-4842-9410-fa58d3aa4f23",
"name": "Analyse Image",
"type": "@n8n/n8n-nodes-langchain.openAi",
"position": [
2928,
528
],
"parameters": {
"modelId": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini",
"cachedResultName": "GPT-4O-MINI"
},
"options": {},
"resource": "image",
"inputType": "base64",
"operation": "analyze"
},
"typeVersion": 1.8
},
{
"id": "ee58e63a-9262-4c2c-b7b3-e5d4554f49f7",
"name": "Transcribe Audio",
"type": "@n8n/n8n-nodes-langchain.openAi",
"position": [
2928,
704
],
"parameters": {
"options": {},
"resource": "audio",
"operation": "transcribe"
},
"typeVersion": 1.8
},
{
"id": "f28c8080-ec2b-493c-b611-7b806153e105",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
768,
368
],
"parameters": {
"color": 5,
"height": 176,
"content": "It can be google sheets/ airtable ..."
},
"typeVersion": 1
},
{
"id": "05989746-b87c-49cb-9c41-360de1c12848",
"name": "Sticky Note5",
"type": "n8n-nodes-base.stickyNote",
"position": [
2080,
-112
],
"parameters": {
"color": 5,
"width": 480,
"content": "## https://n8n.io/creators/jimleuk/ (Jimleuk build this)\n\n- https://n8n.io/workflows/3634-build-your-own-google-drive-mcp-server/ (click the link for more detailed explanation)\n"
},
"typeVersion": 1
},
{
"id": "5c723a04-c8a3-4bc0-8824-c074261b6471",
"name": "search about any doc in google drive",
"type": "@n8n/n8n-nodes-langchain.mcpClientTool",
"position": [
1600,
176
],
"parameters": {
"sseEndpoint": "https://your instancesse"
},
"typeVersion": 1
},
{
"id": "ec2c314e-1663-4bae-81b0-82d178127dba",
"name": "Sticky Note6",
"type": "n8n-nodes-base.stickyNote",
"position": [
112,
272
],
"parameters": {
"color": 5,
"height": 224,
"content": "### Advanced model of claude or Grok 4 for better results "
},
"typeVersion": 1
},
{
"id": "978c81d5-f666-43a6-9264-9afe2a2ef90b",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
2080,
48
],
"parameters": {
"color": 7,
"width": 1180,
"height": 812,
"content": "## 2. Handle Multiple Binary Formats via Conversion and AI\n[Read more about the PostgreSQL Node](https://docs.n8n.io/integrations/builtin/app-nodes/n8n-nodes-base.postgres/)\n\nMCP clients (or rather, the AI agents) still expect and require text responses from our MCP server.\nN8N can provide the right conversion tools to parse most text formats such as PDF, CSV and XML.\nFor images, audio and video, consider using multimodal LLMs to describe or transcribe the file instead."
},
"typeVersion": 1
},
{
"id": "4fbb6c1f-7d48-461e-9f40-b511643ab0de",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
64,
-848
],
"parameters": {
"color": 7,
"width": 1072,
"height": 720,
"content": "## Load data to vector store"
},
"typeVersion": 1
},
{
"id": "5057d61a-b3e1-4954-aeab-af772966ef5a",
"name": "Knowledge Agent",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
464,
0
],
"parameters": {
"options": {
"systemMessage": "=You are **AI Assistant** for **[your company]**, orchestrated by the `Knowledge Agent` node inside an n8n workflow. \nYour mission:\n\n1. **Respond clearly and helpfully** to every user request, matching their tone and preferred language. \n2. **Persist context**: every turn is automatically stored in `Postgres Chat Memory`; use it to maintain continuity, avoid repetition, and recall prior details when relevant. \n3. **Reason before you act**: \n - Call the `Think` tool to outline your plan or ask clarifying questions. \n - Invoke the appropriate tools when needed: \n • `General knowledge` (Supabase vector store) for internal content from [your company] \n • `structured data` (Postgres) for tabular queries \n • `search about any doc in google drive` to locate Drive files \n • `Read File From GDrive` to download and process PDFs, CSVs, images, audio, or video \n • `Message a model in Perplexity` only when you need very recent external web information \n4. **Output format**: reply in well‑structured Markdown—headings, lists, and code when useful. Keep it concise; avoid unnecessary tables.\n\nAdditional notes: \n- Always cite the data source in your answer (“*from the vector store*,” “*from the analysed CSV*,” etc.). \n- If anything is ambiguous (e.g., which file to open), ask a precise follow‑up question first. \n"
}
},
"typeVersion": 2.1
},
{
"id": "e0341ead-2135-442d-a515-4b0c42d63cf9",
"name": "Message a model in Perplexity",
"type": "n8n-nodes-base.perplexityTool",
"position": [
656,
752
],
"parameters": {
"options": {},
"messages": {
"message": [
{
"content": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('message0_Text', ``, 'string') }}"
}
]
},
"requestOptions": {}
},
"credentials": {
"perplexityApi": {
"id": "cNp0HfeB1Cq3pI4g",
"name": "Perplexity account"
}
},
"typeVersion": 1
},
{
"id": "71203174-b2c1-4fd9-8abb-4f254124f72e",
"name": "Sticky Note4",
"type": "n8n-nodes-base.stickyNote",
"position": [
576,
688
],
"parameters": {
"color": 5,
"height": 224,
"content": "### Search for live data in the Web"
},
"typeVersion": 1
},
{
"id": "c7638349-2fc9-4cc7-8b87-3f7acb7973d8",
"name": "Sticky Note7",
"type": "n8n-nodes-base.stickyNote",
"position": [
-880,
-848
],
"parameters": {
"color": 3,
"width": 896,
"height": 1872,
"content": "# 📜 Detailed n8n Workflow Description\n\n## Main Flow\n\nThe workflow operates through a three-step process that handles incoming chat messages with intelligent tool orchestration:\n\n1. **Message Trigger**: The `When chat message received` node triggers whenever a user message arrives and passes it directly to the `Knowledge Agent` for processing.\n\n2. **Agent Orchestration**: The `Knowledge Agent` serves as the central orchestrator, registering a comprehensive toolkit of capabilities:\n - **LLM Processing**: Uses `Anthropic Chat Model` with the *claude-sonnet-4-20250514* model to craft final responses\n - **Memory Management**: Implements `Postgres Chat Memory` to save and recall conversation context across sessions\n - **Reasoning Engine**: Incorporates a `Think` tool to force internal chain-of-thought processing before taking any action\n - **Semantic Search**: Leverages `General knowledge` vector store with OpenAI embeddings (1536-dimensional) and Cohere reranking for intelligent content retrieval\n - **Structured Queries**: Provides `structured data` Postgres tool for executing queries on relational database tables\n - **Drive Integration**: Includes `search about any doc in google drive` functionality to locate specific file IDs\n - **File Processing**: Connects to `Read File From GDrive` sub-workflow for fetching and processing various file formats\n - **External Intelligence**: Offers `Message a model in Perplexity` for accessing up-to-the-minute web information when internal knowledge proves insufficient\n\n3. **Response Generation**: After invoking the `Think` process, the agent intelligently selects appropriate tools based on the query, integrates results from multiple sources, and returns a comprehensive Markdown-formatted answer to the user.\n\n## Persistent Context Management\n\nThe workflow maintains conversation continuity through `Postgres Chat Memory`, which automatically logs every user-agent exchange. This ensures long-term context retention without requiring manual intervention, allowing for sophisticated multi-turn conversations that build upon previous interactions.\n\n## Semantic Retrieval Pipeline\n\nThe semantic search system operates through a sophisticated two-stage process:\n\n- **Embedding Generation**: `Embeddings OpenAI` converts textual content into high-dimensional vector representations\n- **Relevance Reranking**: `Reranker Cohere` reorders search hits to prioritize the most contextually relevant results\n- **Knowledge Integration**: Processed results feed into the `General knowledge` vector store, providing the agent with relevant internal knowledge snippets for enhanced response accuracy\n\n## Google Drive File Processing\n\nThe file reading capability handles multiple formats through a structured sub-workflow:\n\n1. **Workflow Initiation**: The agent calls `Read File From GDrive` with the selected `fileId` parameter\n2. **Sub-workflow Activation**: `When Executed by Another Workflow` node activates the dedicated file processing sub-workflow\n3. **Operation Validation**: `Operation` node confirms the request type is `readFile`\n4. **File Retrieval**: `Download File1` node retrieves the binary file data from Google Drive\n5. **Format-Specific Processing**: `FileType` node branches processing based on MIME type:\n - **PDF Files**: Route through `Extract from PDF` → `Get PDF Response` to extract plain text content\n - **CSV Files**: Process via `Extract from CSV` → `Get CSV Response` to obtain comma-delimited text data\n - **Image Files**: Analyze using `Analyse Image` with GPT-4o-mini to generate visual descriptions\n - **Audio/Video Files**: Transcribe using `Transcribe Audio` with Whisper for text transcript generation\n6. **Content Integration**: The extracted text content returns to `Knowledge Agent`, which seamlessly weaves it into the final response\n\n## External Search Capability\n\nWhen internal knowledge sources prove insufficient, the workflow can access current public information through `Message a model in Perplexity`, ensuring responses remain accurate and up-to-date with the latest available information.\n\n## Design Highlights\n\nThe workflow architecture incorporates several key design principles that enhance reliability and reusability:\n\n- **Forced Reasoning**: The mandatory `Think` step significantly reduces hallucinations and prevents tool misuse by requiring deliberate consideration before action\n- **Template Flexibility**: The design is intentionally generic—organizations can replace **[your company]** placeholders with their specific company name and integrate their own credentials for immediate deployment\n- **Documentation Integration**: Sticky notes throughout the canvas serve as inline documentation for workflow creators and maintainers, providing context without affecting runtime performance\n\n## System Benefits\n\nWith this comprehensive architecture, the assistant delivers powerful capabilities including long-term memory retention, semantic knowledge retrieval, multi-format file processing, and contextually rich responses tailored specifically for users at **[your company]**. The system balances sophisticated AI capabilities with practical business requirements, creating a robust foundation for enterprise-grade conversational AI deployment."
},
"typeVersion": 1
}
],
"pinData": {},
"connections": {
"Think": {
"ai_tool": [
[
{
"node": "Knowledge Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"FileType": {
"main": [
[
{
"node": "Extract from PDF",
"type": "main",
"index": 0
}
],
[
{
"node": "Extract from CSV",
"type": "main",
"index": 0
}
],
[
{
"node": "Analyse Image",
"type": "main",
"index": 0
}
],
[
{
"node": "Transcribe Audio",
"type": "main",
"index": 0
}
]
]
},
"Operation": {
"main": [
[
{
"node": "Download File1",
"type": "main",
"index": 0
}
]
]
},
"Download file": {
"main": [
[
{
"node": "Add to Supabase Vector DB",
"type": "main",
"index": 0
}
]
]
},
"Download File1": {
"main": [
[
{
"node": "FileType",
"type": "main",
"index": 0
}
]
]
},
"Reranker Cohere": {
"ai_reranker": [
[
{
"node": "General knowledge",
"type": "ai_reranker",
"index": 0
}
]
]
},
"structured data": {
"ai_tool": [
[
{
"node": "Knowledge Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"Extract from CSV": {
"main": [
[
{
"node": "Get CSV Response",
"type": "main",
"index": 0
}
]
]
},
"Extract from PDF": {
"main": [
[
{
"node": "Get PDF Response",
"type": "main",
"index": 0
}
]
]
},
"Embeddings OpenAI": {
"ai_embedding": [
[
{
"node": "General knowledge",
"type": "ai_embedding",
"index": 0
}
]
]
},
"General knowledge": {
"ai_tool": [
[
{
"node": "Knowledge Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"Embeddings OpenAI1": {
"ai_embedding": [
[
{
"node": "Add to Supabase Vector DB",
"type": "ai_embedding",
"index": 0
}
]
]
},
"Anthropic Chat Model": {
"ai_languageModel": [
[
{
"node": "Knowledge Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Default Data Loader1": {
"ai_document": [
[
{
"node": "Add to Supabase Vector DB",
"type": "ai_document",
"index": 0
}
]
]
},
"Postgres Chat Memory": {
"ai_memory": [
[
{
"node": "Knowledge Agent",
"type": "ai_memory",
"index": 0
}
]
]
},
"Read File From GDrive": {
"ai_tool": [
[
{
"node": "Google Drive MCP Server",
"type": "ai_tool",
"index": 0
}
]
]
},
"Search Files from Gdrive": {
"ai_tool": [
[
{
"node": "Google Drive MCP Server",
"type": "ai_tool",
"index": 0
}
]
]
},
"When chat message received": {
"main": [
[
{
"node": "Knowledge Agent",
"type": "main",
"index": 0
}
]
]
},
"Message a model in Perplexity": {
"ai_tool": [
[
{
"node": "Knowledge Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"When Executed by Another Workflow": {
"main": [
[
{
"node": "Operation",
"type": "main",
"index": 0
}
]
]
},
"Recursive Character Text Splitter1": {
"ai_textSplitter": [
[
{
"node": "Default Data Loader1",
"type": "ai_textSplitter",
"index": 0
}
]
]
},
"When clicking ‘Execute workflow’": {
"main": [
[
{
"node": "Download file",
"type": "main",
"index": 0
}
]
]
},
"search about any doc in google drive": {
"ai_tool": [
[
{
"node": "Knowledge Agent",
"type": "ai_tool",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
高级 - 内部知识库, AI RAG 检索增强
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
商业AI指挥中心:Google Workspace模块化代理、向量搜索与多渠道报告
商业AI指挥中心:Google Workspace模块化代理、向量搜索与多渠道报告
Set
Gmail
Slack
+35
80 节点Paul
文档提取
使用GPT-5、知识检索和文档上下文自动化HighLevel CRM
通过GPT-5、知识检索和文档上下文自动化HighLevel CRM
Set
Gmail
Slack
+25
55 节点Paul
客户关系管理
在可视化参考库中探索n8n节点
在可视化参考库中探索n8n节点
If
Ftp
Set
+93
113 节点I versus AI
其他
AI驱动股票交易自动化
使用AI技术分析和Alpaca交易自动化股票交易
Set
Code
Gmail
+24
96 节点Paul
加密货币交易
Telegram AI支持聊天机器人(多模态输入)
使用GPT-4和Supabase RAG创建多模态Telegram支持机器人
If
Set
Code
+17
51 节点Ezema Kingsley Chibuzo
客服机器人
AIAutomationPro终极RAG聊天机器人v1 n8n市场模板
多语言Telegram RAG聊天机器人,集成监督AI和自动化Google Drive流程
If
Set
Wait
+29
128 节点Daniel Ng
客服机器人
工作流信息
难度等级
高级
节点数量38
分类2
节点类型24
作者
Paul
@diagoplAutomation expert & n8n power user. I build advanced workflows combining AI, outbound, and business logic. Grab my templates or reach out for custom builds.
外部链接
在 n8n.io 查看 →
分享此工作流