Linkedin 轮播图
高级
这是一个Content Creation, Multimodal AI领域的自动化工作流,包含 33 个节点。主要使用 Code, FormTrigger, HttpRequest, ScheduleTrigger, ChainLlm 等节点。 使用 Gemini AI 和 Post Nitro 自动生成并发布 LinkedIn 轮播图
前置要求
- •可能需要目标 API 的认证凭证
- •Google Gemini API Key
使用的节点 (33)
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "OjCzQZHTVMPt0jhc",
"meta": {
"instanceId": "33f20a7a5f09fe57061a704385c30a2d94962d55c3ce61b95c74d8e2704840c6",
"templateCredsSetupCompleted": true
},
"name": "Linkedin 轮播图",
"tags": [],
"nodes": [
{
"id": "5f5e3dce-7b82-4654-8cc4-088cfd799a36",
"name": "6:00 AM 触发器",
"type": "n8n-nodes-base.scheduleTrigger",
"position": [
-736,
224
],
"parameters": {
"rule": {
"interval": [
{
"triggerAtHour": 6
}
]
}
},
"typeVersion": 1.2
},
{
"id": "8fa6d50b-6c31-423a-b233-38f8585e6905",
"name": "表单提交时",
"type": "n8n-nodes-base.formTrigger",
"position": [
-736,
416
],
"webhookId": "181a4bfd-c5ac-4edb-93e0-34dd66789456",
"parameters": {
"options": {
"path": "create-carousal",
"ignoreBots": true,
"buttonLabel": "Create Carousal"
},
"formTitle": "Linkedin Carousal",
"formFields": {
"values": [
{
"fieldLabel": "Title",
"placeholder": "Nvidia released a new GPU rtx 4090 that supports state of the art gaming and crypto. The really pushed the limits with it.",
"requiredField": true
},
{
"fieldType": "textarea",
"fieldLabel": "Description",
"placeholder": "Nvidia released a new GPU rtx 4090 that supports state of the art gaming and crypto. The really pushe ....",
"requiredField": true
}
]
},
"responseMode": "lastNode",
"formDescription": "Please fill out the form below"
},
"typeVersion": 2.2
},
{
"id": "2224d22d-62ac-4bfa-94e1-260500addc52",
"name": "TechRadar 新闻",
"type": "n8n-nodes-base.httpRequest",
"position": [
16,
-96
],
"parameters": {
"url": "https://www.techradar.com/feeds.xml",
"options": {}
},
"typeVersion": 4.2
},
{
"id": "11057068-72af-4a85-bdd0-1094be3109ce",
"name": "解析 HTML",
"type": "n8n-nodes-base.code",
"position": [
288,
-96
],
"parameters": {
"jsCode": "function parseRssFeed(jsonData) {\n try {\n // Parse JSON input\n const dataObj = JSON.parse(jsonData);\n const xmlString = dataObj[0].json.data;\n\n // Simple regex-based XML parser for RSS items\n const itemRegex = /<item>([\\s\\S]*?)<\\/item>/g;\n const items = [];\n let match;\n\n // Extract all <item> tags\n while ((match = itemRegex.exec(xmlString)) !== null) {\n const itemContent = match[1];\n const item = {};\n\n // Define fields to extract\n const fields = [\n { tag: 'title', key: 'title' },\n { tag: 'description', key: 'description' },\n { tag: 'link', key: 'link' },\n { tag: 'guid', key: 'guid' },\n { tag: 'pubDate', key: 'pubDate' },\n { tag: 'category', key: 'category' },\n { tag: 'dc:creator', key: 'dc_creator' },\n { tag: 'media:content', key: 'media_content', subtag: 'media:credit' },\n { tag: 'media:content', key: 'media_text', subtag: 'media:text' },\n { tag: 'media:content', key: 'media_title', subtag: 'media:title' },\n { tag: 'dc:content', key: 'content' }\n ];\n\n // Extract each field\n fields.forEach(field => {\n let regex;\n if (field.subtag) {\n regex = new RegExp(`<${field.tag}[^>]*>[\\\\s\\\\S]*?<${field.subtag}[^>]*><!\\\\[CDATA\\\\[(.*?)\\\\]\\\\]></${field.subtag}>`, 'i');\n } else {\n regex = new RegExp(`<${field.tag}(?:[^>]*)><!\\\\[CDATA\\\\[(.*?)\\\\]\\\\]></${field.tag}>|<${field.tag}(?:[^>]*)>(.*?)</${field.tag}>`, 'i');\n }\n \n const fieldMatch = itemContent.match(regex);\n if (fieldMatch) {\n let value = fieldMatch[1] || fieldMatch[2] || '';\n // Remove HTML tags\n value = value.replace(/<[^>]+>/g, '').replace(/ /g, ' ').replace(/&/g, '&').trim();\n if (value) {\n item[field.key] = value;\n }\n }\n });\n\n // Handle multiple categories\n const categoryMatches = itemContent.match(/<category><!\\[CDATA\\[(.*?)\\]\\]><\\/category>/g);\n if (categoryMatches) {\n item.category = categoryMatches\n .map(cat => cat.match(/<category><!\\[CDATA\\[(.*?)\\]\\]><\\/category>/)[1])\n .join(', ');\n }\n\n if (Object.keys(item).length > 0) {\n items.push(item);\n }\n }\n\n return items;\n } catch (error) {\n throw new Error(`Error processing RSS feed: ${error?.message}`);\n }\n}\n\n// n8n Function node implementation\ntry {\n const jsonData = JSON.stringify($input.all());\n const result = parseRssFeed(jsonData);\n return {result, error: false, message: null}\n} catch (error) {\n console.log(\"Error : \",error)\n return {result: [], error: true, message: error?.message}\n}"
},
"typeVersion": 2
},
{
"id": "6581b0bb-373e-4986-9951-79957bfb482f",
"name": "Gemini Flash 2.5",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
688,
96
],
"parameters": {
"options": {}
},
"credentials": {
"googlePalmApi": {
"id": "MQASX02thChmCCKm",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "d77b44a6-68d3-4533-b909-d0794cd61c29",
"name": "解析 LLM 响应",
"type": "n8n-nodes-base.code",
"position": [
1040,
-96
],
"parameters": {
"jsCode": "const number = parseInt($input.first().json.text)\nconst item = $('Parse HTML').first().json.result[number]\n\nreturn item"
},
"typeVersion": 2
},
{
"id": "b0399c03-d5f7-44f6-92b7-4e0a43d9de75",
"name": "ImportSlides embedPost",
"type": "@postnitro/n8n-nodes-postnitro-ai.postNitro",
"position": [
2960,
-96
],
"parameters": {
"brandId": "cmegxs6v0001vl704wunklyfg",
"operation": "importSlides",
"slidesJson": "={{ JSON.stringify( $json.slides ) }}",
"templateId": "o7dcr2u3xn9ydx2ipc8vw1js"
},
"credentials": {
"postNitroApi": {
"id": "v7mQk9h9O5oRptiU",
"name": "PostNitro Embed account"
}
},
"typeVersion": 1
},
{
"id": "d30affe8-ec6e-4b82-859a-9b306222059b",
"name": "决定选择哪些新闻",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
688,
-96
],
"parameters": {
"text": "=You are an AI assistant. Your only task is to select the single most relevant news item from the provided news title list.\n\nRelevance criteria (in order of importance):\n1. n8n Automation\n2. AI and Technology News\n3. Personal brand development and motivation\n\nExclusion rules:\n- Ignore any news about love, relationships, entertainment gossip, or censored/inappropriate topics.\n\nNews list (each item has a number and a title):\n```\n[\n{{ JSON.stringify($json.result.map((item, index) => ({ number: index+1, title: item.title })), null, 2) }}\n]\n```\n\nReturn format:\n- Return only the number of the most relevant news item.\n- Do not return text, explanations, or anything else. Just a number\n\nExample valid responses:\n```\n6\n```",
"batching": {},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "3aceebb8-82f6-44b9-a574-bab608861a17",
"name": "Linkedin 用户 URN",
"type": "n8n-nodes-base.httpRequest",
"position": [
3440,
-96
],
"parameters": {
"url": "https://api.linkedin.com/v2/userinfo",
"options": {},
"authentication": "predefinedCredentialType",
"nodeCredentialType": "linkedInOAuth2Api"
},
"credentials": {
"linkedInOAuth2Api": {
"id": "coMeuxMJNgElvcAx",
"name": "LinkedIn account"
}
},
"typeVersion": 4.2
},
{
"id": "a150d9bd-864c-449e-a2e9-11189d4b84f8",
"name": "获取上传 URL",
"type": "n8n-nodes-base.httpRequest",
"position": [
3696,
-96
],
"parameters": {
"url": "https://api.linkedin.com/rest/documents?action=initializeUpload",
"method": "POST",
"options": {},
"jsonBody": "={\n \"initializeUploadRequest\": {\n \"owner\": \"urn:li:person:{{ $json.sub }}\"\n }\n}",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"authentication": "predefinedCredentialType",
"headerParameters": {
"parameters": [
{
"name": "LinkedIn-Version",
"value": "202307"
}
]
},
"nodeCredentialType": "linkedInOAuth2Api"
},
"credentials": {
"linkedInOAuth2Api": {
"id": "coMeuxMJNgElvcAx",
"name": "LinkedIn account"
}
},
"typeVersion": 4.2
},
{
"id": "01bf5969-6e00-47f4-9ae6-42c004f6fd0f",
"name": "上传 PDF",
"type": "n8n-nodes-base.httpRequest",
"position": [
4176,
-96
],
"parameters": {
"url": "={{ $json.value.uploadUrl }}",
"method": "PUT",
"options": {},
"sendBody": true,
"contentType": "binaryData",
"sendHeaders": true,
"authentication": "predefinedCredentialType",
"headerParameters": {
"parameters": [
{
"name": "Content-Type",
"value": "application/pdf"
}
]
},
"inputDataFieldName": "=my.pdf",
"nodeCredentialType": "linkedInOAuth2Api"
},
"credentials": {
"linkedInOAuth2Api": {
"id": "coMeuxMJNgElvcAx",
"name": "LinkedIn account"
}
},
"typeVersion": 4.2
},
{
"id": "f2bcc3a1-e5bc-445e-b3b6-b8d594ccd4e3",
"name": "下载 PDF",
"type": "n8n-nodes-base.httpRequest",
"position": [
3952,
-96
],
"parameters": {
"url": "={{ $('ImportSlides embedPost').item.json.data.result.data }}",
"options": {
"response": {
"response": {
"responseFormat": "file",
"outputPropertyName": "=my.pdf"
}
}
}
},
"typeVersion": 4.2
},
{
"id": "ddbe76f1-856d-4242-b55a-bfae1b4025c7",
"name": "发布到 LinkedIn",
"type": "n8n-nodes-base.httpRequest",
"position": [
5344,
-96
],
"parameters": {
"url": "https://api.linkedin.com/rest/posts",
"method": "POST",
"options": {},
"jsonBody": "={\n \"author\": \"urn:li:person:{{ $('Linkedin User URN').item.json.sub }}\",\n \"commentary\": {{ JSON.stringify($json.content.parts[0].text) }},\n \"visibility\": \"PUBLIC\",\n \"distribution\": {\n \"feedDistribution\": \"MAIN_FEED\",\n \"targetEntities\": [],\n \"thirdPartyDistributionChannels\": []\n },\n \"content\": {\n \"media\": {\n \"title\":\"{{ $('Parse LLM Response1').item.json.slides[0].heading }}\",\n \"id\": \"{{ $('Get Upload URL').item.json.value.document }}\"\n }\n },\n \"lifecycleState\": \"PUBLISHED\",\n \"isReshareDisabledByAuthor\": false\n}",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"authentication": "predefinedCredentialType",
"headerParameters": {
"parameters": [
{
"name": "LinkedIn-Version",
"value": "202408"
},
{
"name": "Content-Type",
"value": "application/json"
}
]
},
"nodeCredentialType": "linkedInOAuth2Api"
},
"credentials": {
"linkedInOAuth2Api": {
"id": "coMeuxMJNgElvcAx",
"name": "LinkedIn account"
}
},
"typeVersion": 4.2
},
{
"id": "10af8746-8f9a-4f18-8e70-c681e35c0ee5",
"name": "Gemini 生成",
"type": "@n8n/n8n-nodes-langchain.googleGemini",
"position": [
2064,
-96
],
"parameters": {
"modelId": {
"__rl": true,
"mode": "list",
"value": "models/gemini-2.5-flash",
"cachedResultName": "models/gemini-2.5-flash"
},
"options": {},
"messages": {
"values": [
{
"content": "=You are an AI Agent that generates LinkedIn carousel post content.\n\nIMPORTANT: Return only raw JSON as plain text. Do not call functions, do not use tool calls, do not add extra text.\n\nYour task: Write engaging, professional slide text for a LinkedIn carousel based on the provided title and description.\n\nNews Input:\n```\nTitle: {{ $json.combinedTitle }}\nDescription: {{ $json.combinedDescription }}\n```\n\nCarousel Requirements:\n- Exactly 1 `starting_slide` → strong hook, with heading, sub_heading, description, and CTA button.\n- At least 1 `body_slide` → explain key insights or takeaways from the news (you may create 2–3 if relevant).\n- Exactly 1 `ending_slide` → motivational close with sub_heading, heading, description, and CTA button.\n- Keep tone professional, concise, and LinkedIn-appropriate.\n- Do not include irrelevant topics (love, politics, entertainment gossip).\n- Ensure headings are short and catchy; descriptions can be 1–3 sentences.\n- Output must be valid JSON only, matching the schema below.\n\nResponse Format:\n```\n{\n\"slides\": [\n {\n \"type\": \"starting_slide\",\n \"sub_heading\": \"string\",\n \"heading\": \"string\",\n \"description\": \"string\",\n \"cta_button\": \"string\"\n },\n {\n \"type\": \"body_slide\",\n \"heading\": \"string\",\n \"description\": \"string\"\n },\n {\n \"type\": \"ending_slide\",\n \"sub_heading\": \"string\",\n \"heading\": \"string\",\n \"description\": \"string\",\n \"cta_button\": \"string\"\n }\n]\n}\n```\n"
}
]
}
},
"credentials": {
"googlePalmApi": {
"id": "MQASX02thChmCCKm",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "55937c1f-4fd0-43e2-a03d-8a78fb7410af",
"name": "Gemini 生成1",
"type": "@n8n/n8n-nodes-langchain.googleGemini",
"position": [
4624,
-96
],
"parameters": {
"modelId": {
"__rl": true,
"mode": "list",
"value": "models/gemini-2.5-flash",
"cachedResultName": "models/gemini-2.5-flash"
},
"options": {},
"messages": {
"values": [
{
"content": "=You are an AI Agent that generates LinkedIn post description.\n\nIMPORTANT: Return only raw text.\n\nYour task: Write engaging, professional text for a LinkedIn post based on the provided title and description.\n\nNews Input:\n```\nTitle: {{ $('Get Title and Description').item.json.combinedTitle }}\nDescription: {{ $('Get Title and Description').item.json.combinedDescription }}\n```\n\nExample Response Format:\n```\n🚀 Just launched my first fully automated LinkedIn carousel — created end-to-end by my AI Employee (built in n8n).\n\nNo manual editing, no wasted time. The system handles content creation → carousel design → posting all on its own.\n\n✨ I’m offering to set this up for 5 people free of cost. If you want to automate your content creation and save hours every week, drop a comment below.\n```\n"
}
]
}
},
"credentials": {
"googlePalmApi": {
"id": "MQASX02thChmCCKm",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "f22f5932-e400-4f52-9c5d-d9d82f22813e",
"name": "便签",
"type": "n8n-nodes-base.stickyNote",
"position": [
-112,
-304
],
"parameters": {
"color": 5,
"width": 576,
"height": 576,
"content": "## 从 TechRadar RSS 源获取新闻并转换为可读对象"
},
"typeVersion": 1
},
{
"id": "db564f1a-8382-4125-9453-ce6bcc0b2af1",
"name": "便签1",
"type": "n8n-nodes-base.stickyNote",
"position": [
560,
-304
],
"parameters": {
"color": 5,
"width": 640,
"height": 576,
"content": "## 让 AI 决定哪些新闻与您的 LinkedIn 个人资料产生共鸣,然后格式化响应"
},
"typeVersion": 1
},
{
"id": "d54269e2-3464-469c-93ed-b2ec80736076",
"name": "便签2",
"type": "n8n-nodes-base.stickyNote",
"position": [
1952,
-304
],
"parameters": {
"color": 5,
"width": 688,
"height": 576,
"content": "## 为轮播图生成内容(然后格式化响应)"
},
"typeVersion": 1
},
{
"id": "33b95b5b-b9f6-45e4-91ac-293320432d8a",
"name": "便签3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1056,
112
],
"parameters": {
"color": 5,
"width": 720,
"height": 544,
"content": "## 触发器"
},
"typeVersion": 1
},
{
"id": "a8715e77-2a98-4856-b38f-fe79b38e2199",
"name": "解析 LLM 响应1",
"type": "n8n-nodes-base.code",
"position": [
2416,
-96
],
"parameters": {
"jsCode": "let raw = $input.first().json.content.parts[0].text\n\n// Remove code fences if present (```json ... ```)\nraw = raw.replace(/```json\\n?/g, \"\").replace(/```/g, \"\");\n\n// Parse into JSON\nlet parsed;\ntry {\n parsed = JSON.parse(raw);\n} catch (e) {\n throw new Error(\"Failed to parse AI response as JSON: \" + e.message);\n}\n\n// Return slides array as n8n items\nreturn parsed"
},
"typeVersion": 2
},
{
"id": "4bd766d9-8e42-4eab-9a3a-d754bdbb3b79",
"name": "便签4",
"type": "n8n-nodes-base.stickyNote",
"position": [
2784,
-304
],
"parameters": {
"color": 5,
"width": 448,
"height": 576,
"content": "## 使用 Post Nitro 创建轮播图 PDF"
},
"typeVersion": 1
},
{
"id": "f3ae1212-699c-4454-b890-aaa5b955ba83",
"name": "便签5",
"type": "n8n-nodes-base.stickyNote",
"position": [
3328,
-304
],
"parameters": {
"color": 5,
"width": 1040,
"height": 576,
"content": "## 将 PDF 上传到 LinkedIn"
},
"typeVersion": 1
},
{
"id": "bf386161-d14a-4267-adb6-b615e8c0f0a3",
"name": "便签6",
"type": "n8n-nodes-base.stickyNote",
"position": [
4464,
-304
],
"parameters": {
"color": 5,
"width": 576,
"height": 576,
"content": "## 生成最终 LinkedIn 帖子描述"
},
"typeVersion": 1
},
{
"id": "88f08f5f-7199-4d31-a642-c0d44b52cfef",
"name": "便签7",
"type": "n8n-nodes-base.stickyNote",
"position": [
5136,
-304
],
"parameters": {
"color": 5,
"width": 576,
"height": 576,
"content": "## 发布到 LinkedIn"
},
"typeVersion": 1
},
{
"id": "61e1f12a-3bf7-4e1b-892f-55b2383fc721",
"name": "便签8",
"type": "n8n-nodes-base.stickyNote",
"position": [
1328,
-304
],
"parameters": {
"color": 5,
"width": 512,
"height": 576,
"content": "## 合并表单和自动输入"
},
"typeVersion": 1
},
{
"id": "acb524f6-629a-4d8d-a9d9-aee282f5a44e",
"name": "获取标题和描述",
"type": "n8n-nodes-base.code",
"position": [
1520,
-96
],
"parameters": {
"mode": "runOnceForEachItem",
"jsCode": "const combinedTitle = $json.title || $json.Title\nconst combinedDescription = $json.content || $json.Description\n\nreturn {\n combinedTitle,\n combinedDescription\n}"
},
"typeVersion": 2
},
{
"id": "902924a0-d6ec-4e59-9662-a47211511b1a",
"name": "便签 10",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1056,
-960
],
"parameters": {
"width": 572,
"height": 944,
"content": "## 试试看!"
},
"typeVersion": 1
},
{
"id": "1ce81516-9c5d-4b6e-8c98-8eeda72a3eac",
"name": "便签9",
"type": "n8n-nodes-base.stickyNote",
"position": [
560,
-432
],
"parameters": {
"color": 3,
"width": 640,
"height": 96,
"content": "## 替换 Gemini API 密钥,同时告知 AI 您在 LinkedIn 上发布的内容"
},
"typeVersion": 1
},
{
"id": "297765b7-bd45-4058-ad6d-f20afc7e6028",
"name": "便签 11",
"type": "n8n-nodes-base.stickyNote",
"position": [
1952,
-416
],
"parameters": {
"color": 3,
"width": 688,
"height": 80,
"content": "## 替换 Gemini API 密钥"
},
"typeVersion": 1
},
{
"id": "7ad7c56a-7f55-4421-b53f-d671be4383d7",
"name": "便签12",
"type": "n8n-nodes-base.stickyNote",
"position": [
2784,
-432
],
"parameters": {
"color": 3,
"width": 448,
"height": 96,
"content": "## 提供您的 Post Nitro 凭据(API 密钥 + 模板 ID + 品牌 ID)"
},
"typeVersion": 1
},
{
"id": "1c31db06-7a55-44f1-a906-03808f638394",
"name": "便签13",
"type": "n8n-nodes-base.stickyNote",
"position": [
3328,
-448
],
"parameters": {
"color": 3,
"width": 1040,
"height": 96,
"content": "## 替换 Linkedin API 密钥"
},
"typeVersion": 1
},
{
"id": "3acf132a-bf51-4479-8076-4e4bd5004889",
"name": "便签14",
"type": "n8n-nodes-base.stickyNote",
"position": [
4464,
-464
],
"parameters": {
"color": 3,
"width": 576,
"height": 96,
"content": "## 替换 Gemini API 密钥"
},
"typeVersion": 1
},
{
"id": "a7b7aa84-7968-43fc-818d-8b2b791ff9e5",
"name": "便签15",
"type": "n8n-nodes-base.stickyNote",
"position": [
5136,
-464
],
"parameters": {
"color": 3,
"width": 576,
"height": 96,
"content": "## 替换 Linkedin API 密钥"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"callerPolicy": "workflowsFromSameOwner",
"errorWorkflow": "OjCzQZHTVMPt0jhc",
"executionOrder": "v1"
},
"versionId": "5df9edde-f91a-498a-a9f3-301bbc1ca414",
"connections": {
"Parse HTML": {
"main": [
[
{
"node": "Decide which News to Choose",
"type": "main",
"index": 0
}
]
]
},
"Upload PDF": {
"main": [
[
{
"node": "Gemini Generate1",
"type": "main",
"index": 0
}
]
]
},
"Download PDF": {
"main": [
[
{
"node": "Upload PDF",
"type": "main",
"index": 0
}
]
]
},
"Get Upload URL": {
"main": [
[
{
"node": "Download PDF",
"type": "main",
"index": 0
}
]
]
},
"TechRadar News": {
"main": [
[
{
"node": "Parse HTML",
"type": "main",
"index": 0
}
]
]
},
"6:00 AM Trigger": {
"main": [
[
{
"node": "TechRadar News",
"type": "main",
"index": 0
}
]
]
},
"Gemini Generate": {
"main": [
[
{
"node": "Parse LLM Response1",
"type": "main",
"index": 0
}
]
]
},
"Gemini Flash 2.5": {
"ai_languageModel": [
[
{
"node": "Decide which News to Choose",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Gemini Generate1": {
"main": [
[
{
"node": "Post to LinkedIn",
"type": "main",
"index": 0
}
]
]
},
"Linkedin User URN": {
"main": [
[
{
"node": "Get Upload URL",
"type": "main",
"index": 0
}
]
]
},
"On form submission": {
"main": [
[
{
"node": "Get Title and Description",
"type": "main",
"index": 0
}
]
]
},
"Parse LLM Response": {
"main": [
[
{
"node": "Get Title and Description",
"type": "main",
"index": 0
}
]
]
},
"Parse LLM Response1": {
"main": [
[
{
"node": "ImportSlides embedPost",
"type": "main",
"index": 0
}
]
]
},
"ImportSlides embedPost": {
"main": [
[
{
"node": "Linkedin User URN",
"type": "main",
"index": 0
}
]
]
},
"Get Title and Description": {
"main": [
[
{
"node": "Gemini Generate",
"type": "main",
"index": 0
}
]
]
},
"Decide which News to Choose": {
"main": [
[
{
"node": "Parse LLM Response",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
高级 - 内容创作, 多模态 AI
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
每日RAG研究论文中心与arXiv、Gemini AI和Notion
每日RAG研究论文中心与arXiv、Gemini AI和Notion
If
Code
Gmail
+8
22 节点dongou
内容创作
使用Gemini AI和Elementor为多个客户生成并安排SEO博客文章
使用Gemini AI和Elementor为多个客户生成并安排SEO博客文章
If
N8n
Set
+12
39 节点Zain Khan
内容创作
使用 Gemini、Tavily 和人工审核生成 SEO 优化 WordPress 博客
使用 Gemini、Tavily 和人工审核生成 SEO 优化 WordPress 博客
If
Set
Code
+12
38 节点Aryan Shinde
内容创作
基于AI的潜在客户资格评定与个性化触达(使用Relevance AI)
基于AI的潜在客户资格评定与个性化触达:使用Relevance AI
Set
Code
Gmail
+11
34 节点Diptamoy Barman
内容创作
使用 Gemini 和 Pollinations AI 自动生成并发布 AI 图片到 Facebook
使用 Gemini 和 Pollinations AI 自动生成并发布 AI 图片到 Facebook
Code
Http Request
Schedule Trigger
+4
10 节点Fahmi Oktafian
内容创作
Apollo 数据抓取与触达流程 1 ✅
使用 Apollo、AI 解析和定时邮件跟进自动生成潜在客户
If
Code
Wait
+13
39 节点Deniz
内容创作