⚙️ 自动化潜在客户研究和个性化外联用于销售电话
中级
这是一个Lead Nurturing, Multimodal AI领域的自动化工作流,包含 15 个节点。主要使用 GoogleSheets, ManualTrigger, Agent, GoogleSheetsTool, LmChatOpenAi 等节点。 使用OpenAI、Tavily和Google Sheets自动化潜在客户研究的销售外联
前置要求
- •Google Sheets API 凭证
- •OpenAI API Key
- •可能需要目标 API 的认证凭证
使用的节点 (15)
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "PN2BI4GGD6HE5lcu",
"meta": {
"instanceId": "9f2d25c77f55013c8efee3de456573aadd7369e6f0aaea70d0311a32c92bead1"
},
"name": "⚙️ 自动化潜在客户研究和个性化外联用于销售电话",
"tags": [],
"nodes": [
{
"id": "7dc4bbec-dae0-459f-840b-909b9bc46e5a",
"name": "当点击\"测试工作流\"时",
"type": "n8n-nodes-base.manualTrigger",
"position": [
256,
-80
],
"parameters": {},
"typeVersion": 1
},
{
"id": "a7ab2ed8-4b80-43c8-9ee6-f5df7f30fcb9",
"name": "AI Agent",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
688,
-80
],
"parameters": {
"text": "=Please research these sales call attendees\n\nName: {{ $json.Name }}\nEmail: {{ $json.Email }}\nCompany Name: {{ $json['Company Name'] }}\nWebsite: {{ $json.Website }}\nBusiness Type: {{ $json['Business Type'] }}\nProject: {{ $json.Project }}",
"options": {
"systemMessage": "# Overview \nYou are an AI agent responsible for gathering company data and updating a Google Sheet with structured output. \n\n## Context \n- After generating output, you must call the **Update Sheet** tool with six specific fields. \n- Do not skip this step or simply return JSON. The tool must be called explicitly to trigger the Google Sheet update. \n\n## Instructions \n1. Accept and parse the input fields. \n2. Use the **Tavily** tool to gather and summarize: \n - `company_overview` \n - `tech_stack` \n - `company_updates` \n3. Use the **Product List** tool to identify: \n - `primary_solution` \n - `solution_2` \n - `solution_3` \n4. Format all results as valid JSON with exactly six fields. \n5. Immediately call the **Update Sheet** tool using the structure shown below. \n\n## Tools \n- **Tavily**: Use to research company background, tech stack, and updates. \n- **Product List**: Use to find relevant products based on business type and project. \n- **Update Sheet**: Required to write the six outputs into Google Sheets. \n\n## Examples \n### Example Input \n```json\n{\n \"Name\": \"Acme Inc.\",\n \"Website\": \"https://www.acme.com\",\n \"Business Type\": \"E-commerce\",\n \"Project\": \"Streamlining logistics with automation\"\n}\n``` \n\n### Example Tavily Summary \n```json\n{\n \"company_overview\": \"Acme Inc. is a fast-scaling e-commerce company focused on home goods and lifestyle products.\",\n \"tech_stack\": \"Shopify, Klaviyo, ShipBob, Gorgias\",\n \"company_updates\": \"Recently launched a same-day delivery program in select cities and expanded product categories in Q2.\"\n}\n``` \n\n### Example Product List Result \n```json\n{\n \"primary_solution\": \"Logistics Automation Suite\",\n \"solution_2\": \"Customer Retention AI\",\n \"solution_3\": \"Real-Time Order Tracking\"\n}\n``` \n\n### Example Tool Call \n```json\n{\n \"tool_call\": {\n \"tool\": \"Update Sheet\",\n \"parameters\": {\n \"company_overview\": \"Acme Inc. is a fast-scaling e-commerce company focused on home goods and lifestyle products.\",\n \"tech_stack\": \"Shopify, Klaviyo, ShipBob, Gorgias\",\n \"company_updates\": \"Recently launched a same-day delivery program in select cities and expanded product categories in Q2.\",\n \"primary_solution\": \"Logistics Automation Suite\",\n \"solution_2\": \"Customer Retention AI\",\n \"solution_3\": \"Real-Time Order Tracking\"\n }\n }\n}\n``` \n\n## SOP (Standard Operating Procedure) \n1. Parse and validate input fields. \n2. Use Tavily to collect: \n - company_overview \n - tech_stack \n - company_updates \n3. Use Product List to determine: \n - primary_solution \n - solution_2 \n - solution_3 \n4. Combine results into a valid JSON object using exact field names. \n5. Call the Update Sheet tool using that object. \n\n## Final Notes \n- Return only valid JSON — no extra text or descriptions. \n- Always include all six fields, even if data is limited. \n- Use of the Update Sheet tool is mandatory to complete the task. \n---\n"
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.9
},
{
"id": "bd083da2-6ad3-410e-a651-4ad3a8330bb2",
"name": "OpenAI 聊天模型",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
544,
144
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4.1",
"cachedResultName": "gpt-4.1"
},
"options": {}
},
"typeVersion": 1.2
},
{
"id": "ef3cb50c-32c4-4ff4-9964-1a2192966ffb",
"name": "Tavily",
"type": "@n8n/n8n-nodes-langchain.toolHttpRequest",
"position": [
656,
144
],
"parameters": {
"url": "https://api.tavily.com/search",
"method": "POST",
"jsonBody": "{\n \"api_key\": \"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\",\n \"query\": \"{searchTerm}\",\n \"search_depth\": \"basic\",\n \"include_answer\": true,\n \"topic\": \"news\",\n \"include_raw_content\": true,\n \"max_results\": 3\n} ",
"sendBody": true,
"specifyBody": "json",
"toolDescription": "Use this tool to search the internet",
"placeholderDefinitions": {
"values": [
{
"name": "searchTerm",
"type": "string",
"description": "What the user has requested to search the internet for"
}
]
}
},
"typeVersion": 1.1
},
{
"id": "210bb30f-aa00-4a35-9d7c-1865611d52f7",
"name": "产品列表",
"type": "n8n-nodes-base.googleSheetsTool",
"position": [
768,
288
],
"parameters": {
"options": {},
"sheetName": {
"__rl": true,
"mode": "list",
"value": 1986928329,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1u3WMJwYGwZewW1IztY8dfbEf5yBQxVh8oH7LQp4rAk4/edit#gid=1986928329",
"cachedResultName": "Products"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1u3WMJwYGwZewW1IztY8dfbEf5yBQxVh8oH7LQp4rAk4",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1u3WMJwYGwZewW1IztY8dfbEf5yBQxVh8oH7LQp4rAk4/edit?usp=drivesdk",
"cachedResultName": "Mock Data"
}
},
"typeVersion": 4.5
},
{
"id": "dd39dd98-d366-4329-9e38-547123f0914b",
"name": "更新表格",
"type": "n8n-nodes-base.googleSheetsTool",
"position": [
880,
224
],
"parameters": {
"columns": {
"value": {
"Email": "={{ $json.Email }}",
"solution_2": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('solution_2', ``, 'string') }}",
"solution_3": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('solution_3', ``, 'string') }}",
"tech_stack": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('tech_stack', ``, 'string') }}",
"company_updates": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('company_updates', ``, 'string') }}",
"company_overview": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('company_overview', ``, 'string') }}",
"primary_solution": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('primary_solution', ``, 'string') }}"
},
"schema": [
{
"id": "Call Date",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Call Date",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Name",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Email",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Email",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Company Name",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Company Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Website",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Website",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Business Type",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Business Type",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Project",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Project",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "company_overview",
"type": "string",
"display": true,
"required": false,
"displayName": "company_overview",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "tech_stack",
"type": "string",
"display": true,
"required": false,
"displayName": "tech_stack",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "company_updates",
"type": "string",
"display": true,
"required": false,
"displayName": "company_updates",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "primary_solution",
"type": "string",
"display": true,
"required": false,
"displayName": "primary_solution",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "solution_2",
"type": "string",
"display": true,
"required": false,
"displayName": "solution_2",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "solution_3",
"type": "string",
"display": true,
"required": false,
"displayName": "solution_3",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "email_subject",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "email_subject",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "email_text",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "email_text",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "sms",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "sms",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "row_number",
"type": "string",
"display": true,
"removed": true,
"readOnly": true,
"required": false,
"displayName": "row_number",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"Email"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "update",
"sheetName": {
"__rl": true,
"mode": "list",
"value": 236449331,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1u3WMJwYGwZewW1IztY8dfbEf5yBQxVh8oH7LQp4rAk4/edit#gid=236449331",
"cachedResultName": "Meeting Data"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1u3WMJwYGwZewW1IztY8dfbEf5yBQxVh8oH7LQp4rAk4",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1u3WMJwYGwZewW1IztY8dfbEf5yBQxVh8oH7LQp4rAk4/edit?usp=drivesdk",
"cachedResultName": "Mock Data"
}
},
"typeVersion": 4.5
},
{
"id": "3ed64385-9943-46e0-b9c6-0db5de32b94e",
"name": "结构化输出解析器",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
976,
128
],
"parameters": {
"jsonSchemaExample": "{\n \"company_overview\": \"string (max 100 tokens)\",\n \"tech_stack\": [\"string\", \"string\", \"...\"],\n \"company_updates\": \"string (max 150 tokens)\",\n \"primary_solution\": \"string\",\n \"solution_2\": \"string\",\n \"solution_3\": \"string\"\n}\n"
},
"typeVersion": 1.2
},
{
"id": "77d1ddb7-4a7f-436e-8fd2-1d5aa5720481",
"name": "销售写作助手",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1184,
-80
],
"parameters": {
"text": "=Name: {{ $('Review Calls').item.json.Name }}\nEmail: {{ $('Review Calls').item.json.Email }}\nCompany Name: {{ $('Review Calls').item.json['Company Name'] }}\nWebsite: {{ $('Review Calls').item.json.Website }}\nBusiness Type: {{ $('Review Calls').item.json['Business Type'] }}\nProject: {{ $('Review Calls').item.json.Project }}\ncompany_overview: {{ $json.output.company_overview }}\ntech_stack: {{ $json.output.tech_stack }}\ncompany_updates: {{ $json.output.company_updates }}\nprimary_solution: {{ $json.output.primary_solution }}\nsolution_2: {{ $json.output.solution_2 }}\nsolution_3: {{ $json.output.solution_3 }}\n",
"options": {
"systemMessage": "# Overview \nYou are a Sales Writing Assistant AI agent responsible for generating a short, personal, and persuasive email, subject line, and SMS right after a prospect books a call. The format must feel handcrafted and human, while integrating strong personalization and a sharp testimonial to build conviction fast. \n\n## Context \n- The prospect should feel like the message was written specifically for them—not templated or generic. \n- The core structure focuses on one key problem they face, followed by immediate proof that we’ve solved that problem for someone just like them. \n- Messaging must be short, clean, confident, and natural—written like a thoughtful sales rep, not a marketer. \n- SMS should be simple, friendly, and casual. \n- Final output must also be logged in a Google Sheet. \n\n## Instructions \n1. Analyze the input fields to identify: \n - Prospect’s first name, company, business type, and project \n - Their specific pain point or goal \n - Tech stack or approach they’re using to solve it \n2. Use the Testimonials Tool to find a success story with a company similar in size, industry, or problem. Pull: \n - Company name \n - Business type \n - Specific result \n - Outcome \n - Solution used \n3. Draft a subject line like: \n - “Excited to connect, (first name)” \n4. Write the email using the following exact structure and voice: \n ```\n Subject: Excited to connect, (first name)\n\n Hey (first name),\n\n Saw your booking—excited to dive in on (meeting date).\n\n Automating (problem/project) is right in our wheelhouse. We actually just helped (testimonial first name) who owns (testimonial business name/type) [achieve similar outcome] and (outcome)—just by (solution).\n\n Looking forward to showing you what’s possible.\n\n – Nolan\n ```\n5. Draft the SMS message using this format: \n - “Hey (first name)! Nolan from Agent Stack here—just saw your appointment come through. Pumped to hear more about (project details). See you on (meeting day/date)!” \n6. Output must include: \n - Subject \n - Email \n - Text Message \n\n## Tools \n- Testimonials Tool: For pulling relevant proof points \n- Email Agent: For formatting and polishing \n- Update Sheets 2: To store outputs \n\n## Examples \n- **Output Subject:** \n Excited to connect, Jason \n\n- **Output Email:** \n Hey Jason, \n\n Saw your booking—excited to dive in on Thursday. \n\n Automating custom proposal workflows is right in our wheelhouse. We actually just helped Vibe Studios who runs a creative agency cut 12+ hrs/week of manual drafting and boost proposal output by 4x—just by automating creative packaging from content requests. \n\n Looking forward to showing you what’s possible. \n\n – Nolan \n\n- **Output Text Message:** \n Hey Jason! Nolan from Agent Stack here—just saw your appointment come through. Pumped to hear more about your proposal automation plans. See you on Thursday! \n\n## SOP (Standard Operating Procedure) \n1. Parse all inputs and identify: \n - Name \n - Specific problem or goal \n - Relevant testimonial \n2. Draft: \n - Subject line using first name \n - Email using the provided structure and tone \n - SMS with natural tone \n3. Output fields: \n - Output Subject \n - Output Email \n - Output Text Message \n4. Use Update Sheets 2 to store the following: \n - Name \n - Email \n - Company Name \n - Subject \n - Email Body \n - SMS Message \n\n## Final Notes \n- Use clean, minimal formatting—no fluff, no pitchy language. \n- The testimonial is central—tie it directly to the prospect’s challenge. \n- The tone should sound like a proactive, thoughtful rep who did their homework. \n---\n\n"
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.9
},
{
"id": "cbfff133-26cf-4664-941f-f16e3f7d6941",
"name": "审核通话",
"type": "n8n-nodes-base.googleSheets",
"position": [
480,
-80
],
"parameters": {
"options": {},
"filtersUI": {
"values": [
{
"lookupValue": "FILL",
"lookupColumn": "company_overview"
}
]
},
"sheetName": {
"__rl": true,
"mode": "list",
"value": 236449331,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1u3WMJwYGwZewW1IztY8dfbEf5yBQxVh8oH7LQp4rAk4/edit#gid=236449331",
"cachedResultName": "Meeting Data"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1u3WMJwYGwZewW1IztY8dfbEf5yBQxVh8oH7LQp4rAk4",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1u3WMJwYGwZewW1IztY8dfbEf5yBQxVh8oH7LQp4rAk4/edit?usp=drivesdk",
"cachedResultName": "Mock Data"
}
},
"typeVersion": 4.5
},
{
"id": "2b18954c-9d14-47db-9883-1b44f5b44b8c",
"name": "OpenAI 聊天模型1",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1136,
160
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4.1",
"cachedResultName": "gpt-4.1"
},
"options": {}
},
"typeVersion": 1.2
},
{
"id": "30ea88b4-5c47-4301-9255-8a2744e776cf",
"name": "客户评价工具",
"type": "n8n-nodes-base.googleSheetsTool",
"position": [
1264,
320
],
"parameters": {
"options": {},
"sheetName": {
"__rl": true,
"mode": "list",
"value": 2060485763,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1u3WMJwYGwZewW1IztY8dfbEf5yBQxVh8oH7LQp4rAk4/edit#gid=2060485763",
"cachedResultName": "Success Stories"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1u3WMJwYGwZewW1IztY8dfbEf5yBQxVh8oH7LQp4rAk4",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1u3WMJwYGwZewW1IztY8dfbEf5yBQxVh8oH7LQp4rAk4/edit?usp=drivesdk",
"cachedResultName": "Mock Data"
}
},
"typeVersion": 4.5
},
{
"id": "30a1b721-3131-4a33-b655-f2fcb749c816",
"name": "结构化输出解析器 1",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
1488,
128
],
"parameters": {
"schemaType": "manual",
"inputSchema": "{\n \"type\": \"object\",\n \"properties\": {\n \"subject\": {\n \"type\": \"string\",\n \"description\": \"The subject line of the confirmation email\"\n },\n \"email\": {\n \"type\": \"string\",\n \"description\": \"The full content of the confirmation email\"\n },\n \"text_message\": {\n \"type\": \"string\",\n \"description\": \"The full content of the confirmation SMS message\"\n }\n },\n \"required\": [\"subject\", \"email\", \"text_message\"]\n}\n"
},
"typeVersion": 1.2
},
{
"id": "8bb34416-b063-47db-bf67-c5df5e0b9cfa",
"name": "更新表格 2",
"type": "n8n-nodes-base.googleSheetsTool",
"position": [
1408,
272
],
"parameters": {
"columns": {
"value": {
"sms": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('sms', ``, 'string') }}",
"Email": "={{ $('Review Calls').item.json.Email }}",
"email_text": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('email_text', ``, 'string') }}",
"email_subject": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('email_subject', ``, 'string') }}"
},
"schema": [
{
"id": "Call Date",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Call Date",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Name",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Email",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Email",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Company Name",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Company Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Website",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Website",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Business Type",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Business Type",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Project",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Project",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "company_overview",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "company_overview",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "tech_stack",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "tech_stack",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "company_updates",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "company_updates",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "primary_solution",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "primary_solution",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "solution_2",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "solution_2",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "solution_3",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "solution_3",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "email_subject",
"type": "string",
"display": true,
"required": false,
"displayName": "email_subject",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "email_text",
"type": "string",
"display": true,
"required": false,
"displayName": "email_text",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "sms",
"type": "string",
"display": true,
"required": false,
"displayName": "sms",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "row_number",
"type": "string",
"display": true,
"removed": true,
"readOnly": true,
"required": false,
"displayName": "row_number",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"Email"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "update",
"sheetName": {
"__rl": true,
"mode": "list",
"value": 236449331,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1u3WMJwYGwZewW1IztY8dfbEf5yBQxVh8oH7LQp4rAk4/edit#gid=236449331",
"cachedResultName": "Meeting Data"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1u3WMJwYGwZewW1IztY8dfbEf5yBQxVh8oH7LQp4rAk4",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1u3WMJwYGwZewW1IztY8dfbEf5yBQxVh8oH7LQp4rAk4/edit?usp=drivesdk",
"cachedResultName": "Mock Data"
}
},
"typeVersion": 4.5
},
{
"id": "51640668-4212-4a55-92cb-e71829734de1",
"name": "便签",
"type": "n8n-nodes-base.stickyNote",
"position": [
-288,
-400
],
"parameters": {
"width": 464,
"height": 768,
"content": "### ⚙️ 销售助手构建:自动化潜在客户研究和个性化外联用于销售电话"
},
"typeVersion": 1
},
{
"id": "bcde15ce-da96-4ef2-a57a-41f595a3d490",
"name": "便签1",
"type": "n8n-nodes-base.stickyNote",
"position": [
192,
-400
],
"parameters": {
"width": 640,
"height": 304,
"content": ""
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "4e4ba2bb-63bb-467c-bd53-fa2faee83424",
"connections": {
"Tavily": {
"ai_tool": [
[
{
"node": "AI Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"AI Agent": {
"main": [
[
{
"node": "Sales Writing Assistant",
"type": "main",
"index": 0
}
]
]
},
"Product List": {
"ai_tool": [
[
{
"node": "AI Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"Review Calls": {
"main": [
[
{
"node": "AI Agent",
"type": "main",
"index": 0
}
]
]
},
"Update Sheet": {
"ai_tool": [
[
{
"node": "AI Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"Update Sheets 2": {
"ai_tool": [
[
{
"node": "Sales Writing Assistant",
"type": "ai_tool",
"index": 0
}
]
]
},
"OpenAI Chat Model": {
"ai_languageModel": [
[
{
"node": "AI Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Testimonials Tool": {
"ai_tool": [
[
{
"node": "Sales Writing Assistant",
"type": "ai_tool",
"index": 0
}
]
]
},
"OpenAI Chat Model1": {
"ai_languageModel": [
[
{
"node": "Sales Writing Assistant",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Structured Output Parser": {
"ai_outputParser": [
[
{
"node": "AI Agent",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"Structured Output Parser1": {
"ai_outputParser": [
[
{
"node": "Sales Writing Assistant",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"When clicking ‘Test workflow’": {
"main": [
[
{
"node": "Review Calls",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
中级 - 客户培育, 多模态 AI
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
使用GPT-4、Tavily和Google Sheets自动化销售电话研究与跟进
使用GPT-4、Tavily和Google Sheets自动化销售电话研究与跟进
Google Sheets
Manual Trigger
Agent
+5
15 节点Muhammad Bello
客户培育
使用AI、Hedra和ElevenLabs生成病毒式婴儿名人播客
使用AI、Hedra和ElevenLabs生成病毒式婴儿名人播客
Code
Wait
Merge
+11
35 节点LeeWei
内容创作
自适应邮件自动回复器(GPT-4、RAG和人工反馈循环)
自适应邮件自动回复器(GPT-4、RAG和人工反馈循环)
If
Set
Gmail
+15
38 节点LeeWei
内容创作
使用OpenAI、RunwayML和ElevenLabs自动化无脸短视频
使用OpenAI、RunwayML和ElevenLabs自动化无脸短视频:从脚本到社交媒体
Set
Code
Wait
+18
56 节点LeeWei
内容创作
冷线索重新参与邮件生成器:GPT-4o-mini、Outlook和Sheets
冷线索重新参与邮件生成器:GPT-4o-mini、Outlook和Sheets
Code
Aggregate
Google Sheets
+6
15 节点Robert Breen
客户培育
使用 OpenAI、QuickChart 和 Google Drive 将电子表格数据转换为智能图表
使用 OpenAI、QuickChart 和 Google Drive 将电子表格数据转换为智能图表
If
Set
Code
+18
82 节点LeeWei
内容创作