8
n8n 中文网amn8n.com

使用VLM Run和Microsoft Office套件提取建筑蓝图数据

中级

这是一个Document Extraction, AI Summarization, Multimodal AI领域的自动化工作流,包含 8 个节点。主要使用 MicrosoftExcel, VlmRun, MicrosoftOneDrive, MicrosoftOneDriveTrigger 等节点。 使用VLM Run和Microsoft Office套件提取建筑蓝图数据

前置要求
  • 无特殊前置要求,导入即可使用
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
  "meta": {
    "instanceId": "96d35e452e0d9a182973416b7532cfc5643239aaaa764a5bf74d52ca84f4a35c",
    "templateCredsSetupCompleted": true
  },
  "nodes": [
    {
      "id": "53f75ca8-6a2a-46b2-b4f7-b4786170d8ce",
      "name": "VLM Run 解析",
      "type": "@vlm-run/n8n-nodes-vlmrun.vlmRun",
      "position": [
        1728,
        288
      ],
      "parameters": {
        "domain": "construction.blueprint"
      },
      "credentials": {
        "vlmRunApi": {
          "id": "7JF2kdNzjhKZsHGg",
          "name": "VLM Run account 2"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "fcf3a39e-e959-4c1b-8b9e-21e2553bd7dc",
      "name": "便签",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        512,
        -208
      ],
      "parameters": {
        "color": 7,
        "width": 480,
        "height": 768,
        "content": "# 使用 VLM Run 进行施工蓝图处理"
      },
      "typeVersion": 1
    },
    {
      "id": "d4229b1b-5209-46f7-b2de-1ad7cbb096ef",
      "name": "便签2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2048,
        -208
      ],
      "parameters": {
        "color": 7,
        "width": 480,
        "height": 768,
        "content": "# 在 Excel 表格中追加行"
      },
      "typeVersion": 1
    },
    {
      "id": "a4ced382-369a-4694-9da8-2cbc4b15c690",
      "name": "便签1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1024,
        -208
      ],
      "parameters": {
        "color": 7,
        "width": 480,
        "height": 768,
        "content": "# 📁 输入处理"
      },
      "typeVersion": 1
    },
    {
      "id": "1956b501-857a-411e-a151-c67a487a1e54",
      "name": "便签3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1536,
        -208
      ],
      "parameters": {
        "width": 480,
        "height": 768,
        "content": "# VLM Run (文档)"
      },
      "typeVersion": 1
    },
    {
      "id": "90bb7989-ea88-4ae4-95c2-ccf9a3040b33",
      "name": "Microsoft OneDrive 触发器",
      "type": "n8n-nodes-base.microsoftOneDriveTrigger",
      "position": [
        1104,
        288
      ],
      "parameters": {
        "options": {},
        "folderId": {
          "__rl": true,
          "mode": "id",
          "value": "AE5A9F7C8F06E9ED!se2bce082634d472487eaa7baa7be36b1"
        },
        "pollTimes": {
          "item": [
            {
              "mode": "everyMinute"
            }
          ]
        },
        "watchFolder": true
      },
      "credentials": {
        "microsoftOneDriveOAuth2Api": {
          "id": "yem1XL6RzYx55n22",
          "name": "Microsoft Drive account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "579975f5-effe-4cb8-8358-f877ba99d414",
      "name": "下载文件",
      "type": "n8n-nodes-base.microsoftOneDrive",
      "position": [
        1312,
        288
      ],
      "parameters": {
        "fileId": "={{ $json.id }}",
        "operation": "download"
      },
      "credentials": {
        "microsoftOneDriveOAuth2Api": {
          "id": "yem1XL6RzYx55n22",
          "name": "Microsoft Drive account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "dad380a9-0be1-465c-99d5-f326e608100a",
      "name": "将数据追加到表格",
      "type": "n8n-nodes-base.microsoftExcel",
      "position": [
        2224,
        288
      ],
      "parameters": {
        "options": {},
        "fieldsUi": {
          "values": [
            {
              "column": "PROJECT DETAILS",
              "fieldValue": "={{ (v => {\n  const S = x =>\n    x == null ? '' :\n    Array.isArray(x)\n      ? x.map(S).map(s => String(s).trim()).filter(Boolean).join(',\\n')\n      : typeof x === 'object'\n        ? Object.entries(x)\n            .filter(([_, val]) => {\n              if (val == null) return false\n              if (typeof val === 'string') return val.trim() !== ''\n              if (Array.isArray(val)) return val.map(S).some(s => String(s).trim() !== '')\n              if (typeof val === 'object') return Object.keys(val).length > 0\n              return true\n            })\n            .map(([k, val]) => {\n              const sv = S(val)\n              return sv ? `${k}: ${sv}` : ''\n            })\n            .filter(Boolean)\n            .join(',\\n')\n        : String(x).trim()\n  return S(v)\n})($json.response?.project_details) }}\n"
            },
            {
              "column": "DOCUMENT TYPE",
              "fieldValue": "={{ $json.response.document_metadata.document_type }}"
            },
            {
              "column": "DOCUMENT NUMBER",
              "fieldValue": "={{ $json.response.document_metadata.document_number }}"
            },
            {
              "column": "ISSUE DATE",
              "fieldValue": "={{ $json.response.document_metadata.issue_date }}"
            },
            {
              "column": "AUTHOR'S NAME",
              "fieldValue": "={{ (v => {\n  const S = x =>\n    x == null ? '' :\n    Array.isArray(x)\n      ? x.map(S).map(s => String(s).trim()).filter(Boolean).join(',\\n')\n      : typeof x === 'object'\n        ? Object.entries(x)\n            .filter(([_, val]) => {\n              if (val == null) return false\n              if (typeof val === 'string') return val.trim() !== ''\n              if (Array.isArray(val)) return val.map(S).some(s => String(s).trim() !== '')\n              if (typeof val === 'object') return Object.keys(val).length > 0\n              return true\n            })\n            .map(([k, val]) => {\n              const sv = S(val)\n              return sv ? `${k}: ${sv}` : ''\n            })\n            .filter(Boolean)\n            .join(',\\n')\n        : String(x).trim()\n  return S(v)\n})($json.response?.document_metadata?.author) }}\n"
            },
            {
              "column": "DRAWING TITLE NUMBERS",
              "fieldValue": "={{ (v => {\n  const S = x =>\n    x == null ? '' :\n    Array.isArray(x)\n      ? x.map(S).map(s => String(s).trim()).filter(Boolean).join(',\\n')\n      : typeof x === 'object'\n        ? Object.entries(x)\n            .filter(([_, val]) => {\n              if (val == null) return false\n              if (typeof val === 'string') return val.trim() !== ''\n              if (Array.isArray(val)) return val.map(S).some(s => String(s).trim() !== '')\n              if (typeof val === 'object') return Object.keys(val).length > 0\n              return true\n            })\n            .map(([k, val]) => {\n              const sv = S(val)\n              return sv ? `${k}: ${sv}` : ''\n            })\n            .filter(Boolean)\n            .join(',\\n')\n        : String(x).trim()\n  return S(v)\n})($json.response?.drawings_blueprints?.drawing_titles_numbers) }}\n"
            },
            {
              "column": "SCALE LEGENDS",
              "fieldValue": "={{ $json.response.drawings_blueprints.scale_legends }}"
            },
            {
              "column": "REVISION HISTORY",
              "fieldValue": "={{ (v => {\n  const S = x =>\n    x == null ? '' :\n    Array.isArray(x)\n      ? x.map(S).map(s => String(s).trim()).filter(Boolean).join(',\\n')\n      : typeof x === 'object'\n        ? Object.entries(x)\n            .filter(([_, val]) => {\n              if (val == null) return false\n              if (typeof val === 'string') return val.trim() !== ''\n              if (Array.isArray(val)) return val.map(S).some(s => String(s).trim() !== '')\n              if (typeof val === 'object') return Object.keys(val).length > 0\n              return true\n            })\n            .map(([k, val]) => {\n              const sv = S(val)\n              return sv ? `${k}: ${sv}` : ''\n            })\n            .filter(Boolean)\n            .join(',\\n')\n        : String(x).trim()\n  return S(v)\n})($json.response?.drawings_blueprints?.revision_history) }}\n"
            },
            {
              "column": "ANNOTATIONS MARKUPS",
              "fieldValue": "={{ (v => {\n  const S = x =>\n    x == null ? '' :\n    Array.isArray(x)\n      ? x.map(S).map(s => String(s).trim()).filter(Boolean).join(',\\n')\n      : typeof x === 'object'\n        ? Object.entries(x)\n            .filter(([_, val]) => {\n              if (val == null) return false\n              if (typeof val === 'string') return val.trim() !== ''\n              if (Array.isArray(val)) return val.map(S).some(s => String(s).trim() !== '')\n              if (typeof val === 'object') return Object.keys(val).length > 0\n              return true\n            })\n            .map(([k, val]) => {\n              const sv = S(val)\n              return sv ? `${k}: ${sv}` : ''\n            })\n            .filter(Boolean)\n            .join(',\\n')\n        : String(x).trim()\n  return S(v)\n})($json.response?.drawings_blueprints?.annotations_markups) }}\n"
            },
            {
              "column": "JOB NAME",
              "fieldValue": "={{ $json.response.title_block.job_name }}"
            },
            {
              "column": "ADDRESS",
              "fieldValue": "={{ (v => {\n  const S = x =>\n    x == null ? '' :\n    Array.isArray(x)\n      ? x.map(S).map(s => String(s).trim()).filter(Boolean).join(',\\n')\n      : typeof x === 'object'\n        ? Object.entries(x)\n            .filter(([_, val]) => {\n              if (val == null) return false\n              if (typeof val === 'string') return val.trim() !== ''\n              if (Array.isArray(val)) return val.map(S).some(s => String(s).trim() !== '')\n              if (typeof val === 'object') return Object.keys(val).length > 0\n              return true\n            })\n            .map(([k, val]) => {\n              const sv = S(val)\n              return sv ? `${k}: ${sv}` : ''\n            })\n            .filter(Boolean)\n            .join(',\\n')\n        : String(x).trim()\n  return S(v)\n})($json.response?.title_block?.address) }}\n"
            },
            {
              "column": "DRAWING NUMBER",
              "fieldValue": "={{ $json.response.title_block.drawing_number }}"
            },
            {
              "column": "REVISION",
              "fieldValue": "={{ $json.response.title_block.revision }}"
            },
            {
              "column": "DRAWN BY",
              "fieldValue": "={{ $json.response.title_block.drawn_by }}"
            },
            {
              "column": "CHECKED BY",
              "fieldValue": "={{ $json.response.title_block.checked_by }}"
            },
            {
              "column": "SCALE",
              "fieldValue": "={{ $json.response.title_block.scale }}"
            },
            {
              "column": "AGENCY NAME",
              "fieldValue": "={{ $json.response.title_block.agency_name }}"
            },
            {
              "column": "DOCUMENT TITLE",
              "fieldValue": "={{ $json.response.title_block.document_title }}"
            },
            {
              "column": "OTHER METADATA",
              "fieldValue": "={{ (v => {\n  const S = x =>\n    x == null ? '' :\n    Array.isArray(x)\n      ? x.map(S).map(s => String(s).trim()).filter(Boolean).join(',\\n')\n      : typeof x === 'object'\n        ? Object.entries(x)\n            .filter(([_, val]) => {\n              if (val == null) return false\n              if (typeof val === 'string') return val.trim() !== ''\n              if (Array.isArray(val)) return val.map(S).some(s => String(s).trim() !== '')\n              if (typeof val === 'object') return Object.keys(val).length > 0\n              return true\n            })\n            .map(([k, val]) => {\n              const sv = S(val)\n              return sv ? `${k}: ${sv}` : ''\n            })\n            .filter(Boolean)\n            .join(',\\n')\n        : String(x).trim()\n  return S(v)\n})($json.response?.title_block?.other_metadata) }}\n"
            },
            {
              "column": "DRAWING TYPE",
              "fieldValue": "={{ $json.response.drawing_type }}"
            },
            {
              "column": "LEGAL COMPLIANCE",
              "fieldValue": "={{ (v => {\n  const S = x =>\n    x == null ? '' :\n    Array.isArray(x)\n      ? x.map(S).map(s => String(s).trim()).filter(Boolean).join(',\\n')\n      : typeof x === 'object'\n        ? Object.entries(x)\n            .filter(([_, val]) => {\n              if (val == null) return false\n              if (typeof val === 'string') return val.trim() !== ''\n              if (Array.isArray(val)) return val.map(S).some(s => String(s).trim() !== '')\n              if (typeof val === 'object') return Object.keys(val).length > 0\n              return true\n            })\n            .map(([k, val]) => {\n              const sv = S(val)\n              return sv ? `${k}: ${sv}` : ''\n            })\n            .filter(Boolean)\n            .join(',\\n')\n        : String(x)\n  return S(v)\n})($json.response?.compliance_legal) }}\n"
            },
            {
              "column": "SCALE INFORMATION",
              "fieldValue": "={{ $json.response.scale_information }}"
            }
          ]
        },
        "resource": "worksheet",
        "workbook": {
          "__rl": true,
          "mode": "list",
          "value": "AE5A9F7C8F06E9ED!sc46f0642e32643ada075b983e522bdc7",
          "cachedResultUrl": "https://onedrive.live.com/personal/ae5a9f7c8f06e9ed/_layouts/15/doc.aspx?resid=c46f0642-e326-43ad-a075-b983e522bdc7&cid=ae5a9f7c8f06e9ed",
          "cachedResultName": "Construction Blueprint"
        },
        "operation": "append",
        "worksheet": {
          "__rl": true,
          "mode": "list",
          "value": "{00000000-0001-0000-0000-000000000000}",
          "cachedResultUrl": "https://onedrive.live.com/personal/ae5a9f7c8f06e9ed/_layouts/15/doc.aspx?resid=c46f0642-e326-43ad-a075-b983e522bdc7&cid=ae5a9f7c8f06e9ed&activeCell=Sheet1!A1",
          "cachedResultName": "Sheet1"
        }
      },
      "credentials": {
        "microsoftExcelOAuth2Api": {
          "id": "YspXACjq4yHdKOIF",
          "name": "Microsoft Excel account"
        }
      },
      "typeVersion": 2.1
    }
  ],
  "pinData": {},
  "connections": {
    "Download a file": {
      "main": [
        [
          {
            "node": "VLM Run Parsing",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "VLM Run Parsing": {
      "main": [
        [
          {
            "node": "Append data to sheet",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Microsoft OneDrive Trigger": {
      "main": [
        [
          {
            "node": "Download a file",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
常见问题

如何使用这个工作流?

复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。

这个工作流适合什么场景?

中级 - 文档提取, AI 摘要总结, 多模态 AI

需要付费吗?

本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。

工作流信息
难度等级
中级
节点数量8
分类3
节点类型5
难度说明

适合有一定经验的用户,包含 6-15 个节点的中等复杂度工作流

作者
Shahrear

Shahrear

@shahrear

I’m Shahrear, a Software Engineer with over 5 years of experience in full-stack development and workflow automation. I specialize in building intelligent automations using n8n, helping teams streamline operations and boost productivity. I’m also an expert in developing custom n8n nodes, with published work on npm - including the @vlm-run/n8n-nodes-vlmrun package. Linkedin - https://www.linkedin.com/in/shahrear-amin/ Email - shahrearbinamin33@gmail.com

外部链接
在 n8n.io 查看

分享此工作流