面包店数据分析工作流4
中级
这是一个Miscellaneous, AI RAG, Multimodal AI领域的自动化工作流,包含 10 个节点。主要使用 Agent, GoogleSheetsTool, ChatTrigger, LmChatAzureOpenAi, MemoryBufferWindow 等节点。 使用Google Sheets和Azure GPT聊天助手分析面包店销售与库存
前置要求
- •Google Sheets API 凭证
- •OpenAI API Key
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "3v8t7FV5f5vkU9LM",
"meta": {
"instanceId": "3caab7a077d6a24bf913833250143556c3033c05ff2ea30885e13d0164c0cec2",
"templateCredsSetupCompleted": true
},
"name": "面包店数据分析工作流4",
"tags": [],
"nodes": [
{
"id": "e559ce26-07d1-4bca-aa53-082ff8480e63",
"name": "当收到聊天消息时",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-384,
-192
],
"webhookId": "1d429d6b-8816-4023-88da-af4cc93a4f81",
"parameters": {
"options": {}
},
"typeVersion": 1.3
},
{
"id": "517129d9-18fc-4bf3-8193-8d8ed8fb8b1f",
"name": "AI Agent",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
-112,
-192
],
"parameters": {
"options": {
"systemMessage": "You are a professional Data Analysis Assistant specialized in Excel datasets. \nYou never assume what the user wants — you only respond based on their exact question. \n\nBehavior & Tone:\n- Clear, concise, and professional.\n- Always answer in plain English, avoiding unnecessary jargon.\n- Use short, structured insights (bullets, small tables, or compact summaries).\n- Keep responses brief but meaningful — no long reports unless explicitly requested.\n- Provide actionable insights when appropriate, but do not invent analysis that was not asked.\n\nInstructions:\n1. Only analyze the Excel data when the user asks a specific question.\n2. Never output full raw data unless explicitly requested.\n3. Present results in a compact format (e.g., weekly breakdown, totals, highlights) if the question relates to time or quantities.\n4. If the data is insufficient, state the limitation clearly.\n5. Keep a balanced tone: informative, decision-oriented, and easy to understand.\n6. Never assume tasks — wait for user instructions before analyzing. \n7. If a recommendation is reasonable (like stocking, trends, or anomalies), keep it short and relevant to the user’s query.\n"
}
},
"typeVersion": 2.2
},
{
"id": "ed8f4fe1-272f-4657-ac41-36ffb7456bb1",
"name": "简单记忆",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
-16,
32
],
"parameters": {},
"typeVersion": 1.3
},
{
"id": "d1a293d6-7e5b-4543-9107-9caf45b4051a",
"name": "获取面包店数据",
"type": "n8n-nodes-base.googleSheetsTool",
"position": [
320,
-80
],
"parameters": {
"options": {},
"sheetName": {
"__rl": true,
"mode": "list",
"value": 764145761,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1dCCQzjoDZak-mQD1iyGd5aHKGFeh15fsBPUIoTgAYGw/edit#gid=764145761",
"cachedResultName": "Full Month"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1dCCQzjoDZak-mQD1iyGd5aHKGFeh15fsBPUIoTgAYGw",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1dCCQzjoDZak-mQD1iyGd5aHKGFeh15fsBPUIoTgAYGw/edit?usp=drivesdk",
"cachedResultName": "Bakery data 1 month"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "2cLBwxQBfcaJ1DCN",
"name": "Google Sheets account"
}
},
"typeVersion": 4.7
},
{
"id": "1106cbea-591d-4dd4-88dd-03ad52052e38",
"name": "Azure OpenAI聊天模型",
"type": "@n8n/n8n-nodes-langchain.lmChatAzureOpenAi",
"position": [
-400,
32
],
"parameters": {
"model": "gpt-5-mini",
"options": {}
},
"credentials": {
"azureOpenAiApi": {
"id": "eyXr9TTWzqXoS9oD",
"name": "Azure Open AI account"
}
},
"typeVersion": 1
},
{
"id": "dc450b50-9326-40a1-a25a-c044c459a1ff",
"name": "便签",
"type": "n8n-nodes-base.stickyNote",
"position": [
-464,
-512
],
"parameters": {
"width": 256,
"height": 496,
"content": "## 工作流:**面包店数据分析**"
},
"typeVersion": 1
},
{
"id": "982b0dd2-ac23-47d6-a91b-5df8d2d42527",
"name": "便签1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-192,
-512
],
"parameters": {
"color": 3,
"width": 336,
"height": 496,
"content": "### 节点 2:**AI Agent**"
},
"typeVersion": 1
},
{
"id": "4fa77358-11a8-4c21-bdb2-c1f606773d17",
"name": "便签2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-128,
144
],
"parameters": {
"color": 2,
"width": 320,
"height": 272,
"content": "### 节点 3:**简单记忆**"
},
"typeVersion": 1
},
{
"id": "3e234b21-725b-4aaa-a767-a2a05e744a55",
"name": "便签3",
"type": "n8n-nodes-base.stickyNote",
"position": [
208,
-384
],
"parameters": {
"color": 4,
"width": 320,
"height": 432,
"content": "### 节点 4:**获取面包店数据**"
},
"typeVersion": 1
},
{
"id": "4b5eb0ce-e311-4bed-821b-fcf7e5cf74ba",
"name": "便签说明4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-528,
176
],
"parameters": {
"color": 6,
"width": 352,
"height": 336,
"content": "### 节点 5:**Azure OpenAI 聊天模型**"
},
"typeVersion": 1
}
],
"active": true,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "fe8411cd-b13e-40b3-beca-c579c00be0fc",
"connections": {
"Simple Memory": {
"ai_memory": [
[
{
"node": "AI Agent",
"type": "ai_memory",
"index": 0
}
]
]
},
"Retrieve bakery data": {
"ai_tool": [
[
{
"node": "AI Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"Azure OpenAI Chat Model": {
"ai_languageModel": [
[
{
"node": "AI Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"When chat message received": {
"main": [
[
{
"node": "AI Agent",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
中级 - 杂项, AI RAG 检索增强, 多模态 AI
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
使用 OpenAI 嵌入的 BigQuery RAG
使用 BigQuery RAG 和 OpenAI 回答文档相关问题
Set
Http Request
Agent
+6
24 节点Dataki
杂项
多源采集
网络研究助手:基于Gemini AI的自动化搜索和抓取,生成电子表格报告
Set
Code
Http Request
+7
23 节点franck fambou
杂项
💥 使用ChatGPT-5构建您的第一个AI代理
使用GPT-5、Google日历和表格创建知识库与日程安排AI助手
Gmail Tool
Agent
Google Sheets Tool
+6
14 节点Dr. Firas
杂项
使用 Google 日历和表格创建 AI 驱动的虚拟接待员
使用 Google 日历和表格创建 AI 驱动的虚拟接待员
Google Sheets
Agent
Google Sheets Tool
+6
12 节点Risper
杂项
Dream 100 研究代理
使用 Perplexity AI 研究和 Google Sheets 生成 Dream 100 潜在客户列表
If
Set
Slack
+11
29 节点Brandon True
杂项
使用 Google Drive 的 RAG 聊天机器人
使用OpenAI、Google Drive和Supabase构建RAG知识聊天机器人
Set
Supabase
Google Drive
+12
20 节点Babish Shrestha
杂项