使用PDF向量AI解析评分简历
中级
这是一个HR, AI Summarization, Multimodal AI领域的自动化工作流,包含 11 个节点。主要使用 Set, Code, GoogleDrive, ManualTrigger, PdfVector 等节点。 使用PDF向量AI解析评分简历
前置要求
- •Google Drive API 凭证
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"meta": {
"instanceId": "placeholder"
},
"nodes": [
{
"id": "overview-note",
"name": "系统概览",
"type": "n8n-nodes-base.stickyNote",
"position": [
50,
50
],
"parameters": {
"color": 5,
"width": 350,
"height": 180,
"content": "## 👥 AI 简历处理系统"
},
"typeVersion": 1
},
{
"id": "setup-note",
"name": "需要设置",
"type": "n8n-nodes-base.stickyNote",
"position": [
50,
250
],
"parameters": {
"color": 4,
"width": 280,
"height": 150,
"content": "## ⚙️ 首先配置"
},
"typeVersion": 1
},
{
"id": "input-note",
"name": "输入格式",
"type": "n8n-nodes-base.stickyNote",
"position": [
450,
450
],
"parameters": {
"width": 250,
"height": 150,
"content": "## 📄 简历输入"
},
"typeVersion": 1
},
{
"id": "extract-note",
"name": "数据提取",
"type": "n8n-nodes-base.stickyNote",
"position": [
750,
450
],
"parameters": {
"width": 260,
"height": 180,
"content": "## 🤖 AI 提取"
},
"typeVersion": 1
},
{
"id": "scoring-note",
"name": "候选人评分",
"type": "n8n-nodes-base.stickyNote",
"position": [
1050,
450
],
"parameters": {
"color": 6,
"width": 260,
"height": 180,
"content": "## 📊 评分引擎"
},
"typeVersion": 1
},
{
"id": "manual-trigger",
"name": "手动触发器",
"type": "n8n-nodes-base.manualTrigger",
"notes": "Start resume parsing",
"position": [
250,
300
],
"parameters": {},
"typeVersion": 1
},
{
"id": "google-drive",
"name": "从 Google Drive 获取简历",
"type": "n8n-nodes-base.googleDrive",
"notes": "Download resume from Google Drive",
"position": [
450,
300
],
"parameters": {
"fileId": "={{ $json.fileId }}",
"operation": "download"
},
"typeVersion": 3
},
{
"id": "pdfvector-parse",
"name": "PDF Vector - 解析简历",
"type": "n8n-nodes-pdfvector.pdfVector",
"notes": "Extract candidate information",
"position": [
650,
300
],
"parameters": {
"prompt": "Extract all relevant information from this resume document or image including personal details, work experience with dates and achievements, education, all technical and soft skills, certifications, and languages. Handle both digital documents and scanned/photographed resumes. Pay special attention to dates for calculating experience.",
"schema": "{\"type\":\"object\",\"properties\":{\"personalInfo\":{\"type\":\"object\",\"properties\":{\"name\":{\"type\":\"string\"},\"email\":{\"type\":\"string\"},\"phone\":{\"type\":\"string\"},\"location\":{\"type\":\"string\"},\"linkedIn\":{\"type\":\"string\"},\"summary\":{\"type\":\"string\"}}},\"workExperience\":{\"type\":\"array\",\"items\":{\"type\":\"object\",\"properties\":{\"company\":{\"type\":\"string\"},\"position\":{\"type\":\"string\"},\"startDate\":{\"type\":\"string\"},\"endDate\":{\"type\":\"string\"},\"description\":{\"type\":\"string\"},\"achievements\":{\"type\":\"array\",\"items\":{\"type\":\"string\"}},\"technologies\":{\"type\":\"array\",\"items\":{\"type\":\"string\"}}}}},\"education\":{\"type\":\"array\",\"items\":{\"type\":\"object\",\"properties\":{\"institution\":{\"type\":\"string\"},\"degree\":{\"type\":\"string\"},\"field\":{\"type\":\"string\"},\"graduationDate\":{\"type\":\"string\"},\"gpa\":{\"type\":\"string\"}}}},\"skills\":{\"type\":\"object\",\"properties\":{\"technical\":{\"type\":\"array\",\"items\":{\"type\":\"string\"}},\"soft\":{\"type\":\"array\",\"items\":{\"type\":\"string\"}},\"languages\":{\"type\":\"array\",\"items\":{\"type\":\"object\",\"properties\":{\"language\":{\"type\":\"string\"},\"proficiency\":{\"type\":\"string\"}}}}}},\"certifications\":{\"type\":\"array\",\"items\":{\"type\":\"object\",\"properties\":{\"name\":{\"type\":\"string\"},\"issuer\":{\"type\":\"string\"},\"date\":{\"type\":\"string\"},\"expiryDate\":{\"type\":\"string\"}}}}},\"required\":[\"personalInfo\"],\"additionalProperties\":false}",
"resource": "document",
"inputType": "file",
"operation": "extract",
"binaryPropertyName": "data"
},
"typeVersion": 1
},
{
"id": "calculate-metrics",
"name": "计算经验指标",
"type": "n8n-nodes-base.code",
"notes": "Calculate experience and skill scores",
"position": [
850,
300
],
"parameters": {
"jsCode": "// Calculate experience and skill metrics\nconst resume = $input.first().json.data;\nconst currentDate = new Date();\n\n// Calculate total years of experience\nlet totalExperience = 0;\nlet skillExperience = {};\n\nif (resume.workExperience) {\n resume.workExperience.forEach(job => {\n const startDate = new Date(job.startDate);\n const endDate = job.endDate === 'Present' ? currentDate : new Date(job.endDate);\n const years = (endDate - startDate) / (1000 * 60 * 60 * 24 * 365);\n totalExperience += years;\n \n // Track experience per technology\n if (job.technologies) {\n job.technologies.forEach(tech => {\n skillExperience[tech] = (skillExperience[tech] || 0) + years;\n });\n }\n });\n}\n\n// Create skill proficiency scores\nconst skillScores = {};\nif (resume.skills?.technical) {\n resume.skills.technical.forEach(skill => {\n const experience = skillExperience[skill] || 0;\n let score = 0;\n if (experience >= 5) score = 5;\n else if (experience >= 3) score = 4;\n else if (experience >= 1) score = 3;\n else if (experience > 0) score = 2;\n else score = 1;\n \n skillScores[skill] = {\n yearsExperience: Math.round(experience * 10) / 10,\n proficiencyScore: score\n };\n });\n}\n\nreturn [{\n json: {\n candidateProfile: resume,\n metrics: {\n totalYearsExperience: Math.round(totalExperience * 10) / 10,\n skillScores: skillScores,\n educationLevel: resume.education?.[0]?.degree || 'Not specified',\n certificationCount: resume.certifications?.length || 0,\n languageCount: resume.skills?.languages?.length || 0\n },\n processedAt: new Date().toISOString()\n }\n}];"
},
"typeVersion": 2
},
{
"id": "pdfvector-assess",
"name": "PDF Vector - AI 评估",
"type": "n8n-nodes-pdfvector.pdfVector",
"notes": "Get AI assessment",
"position": [
1050,
300
],
"parameters": {
"prompt": "Based on this resume document or image, provide a brief assessment of the candidate's strengths, potential roles they would fit, and any notable achievements. Also suggest their seniority level (Junior/Mid/Senior/Lead).",
"resource": "document",
"inputType": "file",
"operation": "ask",
"binaryPropertyName": "data"
},
"typeVersion": 1
},
{
"id": "create-profile",
"name": "创建候选人档案",
"type": "n8n-nodes-base.set",
"notes": "Combine all data",
"position": [
1250,
300
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "assignment1",
"name": "profile",
"type": "object",
"value": "={{ $node['Calculate Experience Metrics'].json.candidateProfile }}"
},
{
"id": "assignment2",
"name": "metrics",
"type": "object",
"value": "={{ $node['Calculate Experience Metrics'].json.metrics }}"
},
{
"id": "assignment3",
"name": "aiAssessment",
"type": "string",
"value": "={{ $json.answer }}"
},
{
"id": "assignment4",
"name": "atsReady",
"type": "boolean",
"value": "true"
}
]
}
},
"typeVersion": 3
}
],
"connections": {
"Manual Trigger": {
"main": [
[
{
"node": "Get Resume from Google Drive",
"type": "main",
"index": 0
}
]
]
},
"PDF Vector - Parse Resume": {
"main": [
[
{
"node": "Calculate Experience Metrics",
"type": "main",
"index": 0
}
]
]
},
"PDF Vector - AI Assessment": {
"main": [
[
{
"node": "Create Candidate Profile",
"type": "main",
"index": 0
}
]
]
},
"Calculate Experience Metrics": {
"main": [
[
{
"node": "PDF Vector - AI Assessment",
"type": "main",
"index": 0
}
]
]
},
"Get Resume from Google Drive": {
"main": [
[
{
"node": "PDF Vector - Parse Resume",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
中级 - 人力资源, AI 摘要总结, 多模态 AI
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
使用PDF Vector进行OCR、分析和Google Drive的文档处理
使用PDF Vector进行OCR、分析和Google Drive的文档处理
Set
Code
Split Out
+6
13 节点PDF Vector
文档提取
使用 PDF Vector 和 Google Drive 的自动化收据处理与税务分类
使用 PDF Vector 和 Google Drive 的自动化收据处理与税务分类
Code
Google Drive
Google Sheets
+3
9 节点PDF Vector
发票处理
使用PDF Vector和HIPAA合规从医疗文档提取临床数据
使用PDF Vector和HIPAA合规从医疗文档提取临床数据
If
Code
Postgres
+4
9 节点PDF Vector
文档提取
使用PDF向量、Google Drive和数据库提取和存储发票数据
使用PDF向量、Google Drive和数据库提取和存储发票数据
If
Code
Slack
+7
26 节点PDF Vector
发票处理
批量PDF转Markdown转换(Google Drive与LLM解析)
使用Google Drive和LLM驱动的解析进行批量PDF转Markdown转换
If
Set
Code
+4
8 节点PDF Vector
内容创作
使用 PDF 向量、OCR、GPT-4 和 Google Drive 的研究论文分析系统
使用 PDF 向量、OCR、GPT-4 和 Google Drive 的研究论文分析系统
Code
Open Ai
Postgres
+4
11 节点PDF Vector
文档提取
工作流信息
难度等级
中级
节点数量11
分类3
节点类型6
作者
PDF Vector
@pdfvectorA fully featured PDF APIs for developers - Parse any PDF or Word document, extract structured data, and access millions of academic papers - all through simple APIs.
外部链接
在 n8n.io 查看 →
分享此工作流