对冲基金多代理交易系统 + GPT-5
高级
这是一个Miscellaneous, AI Chatbot, AI Summarization, Multimodal AI领域的自动化工作流,包含 23 个节点。主要使用 Notion, OpenAi, Telegram, HttpRequest, TelegramTrigger 等节点。 使用 GPT-5、Telegram、Coinbase 和 Notion 进行多代理交易分析
前置要求
- •Notion API Key
- •OpenAI API Key
- •Telegram Bot Token
- •可能需要目标 API 的认证凭证
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "eEX0exKxcdUYolNH",
"meta": {
"instanceId": "b14f5dd921befc4584084cc386aea593f73c7c2b00b50933075d7967a4d1c502",
"templateCredsSetupCompleted": true
},
"name": "Hedge Fund Multi-Agent Trading System + GPT 5",
"tags": [],
"nodes": [
{
"id": "0d5ffebd-9109-44e2-b4b5-5641518f2655",
"name": "Telegram Trigger",
"type": "n8n-nodes-base.telegramTrigger",
"position": [
-976,
240
],
"webhookId": "96c23cf5-c4b5-4db5-8753-d9d95f2b925e",
"parameters": {
"updates": [
"callback_query",
"channel_post",
"message"
],
"additionalFields": {}
},
"credentials": {
"telegramApi": {
"id": "5UNbimarOaH1QxRo",
"name": "Telegram account 2"
}
},
"typeVersion": 1
},
{
"id": "c5e8ba12-d85d-4550-b7f2-ddc64ec56a00",
"name": "Valuation Agent",
"type": "n8n-nodes-base.openAi",
"position": [
-64,
480
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are a Senior Valuation Analyst with expertise in DCF modeling, comparable company analysis, and precedent transactions.\n\n## Task\nPerform comprehensive valuation analysis using multiple methodologies to determine fair value.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}}\n- Current Price: ${{$json.price}}\n- Financial Data: {{$json.financials}}\n- Free Cash Flow: {{$json.fcf}}\n- Revenue Growth: {{$json.revenue_growth}}\n- EBITDA Margin: {{$json.ebitda_margin}}\n- WACC: {{$json.wacc}}\n- Industry Multiples: {{$json.industry_multiples}}\n\n## Valuation Methods\n1. **Discounted Cash Flow (DCF)**:\n - Project 5-year free cash flows\n - Apply appropriate discount rate (WACC)\n - Calculate terminal value\n - Sum to present value\n\n2. **Comparable Company Analysis**:\n - Use industry P/E, EV/EBITDA, P/S multiples\n - Apply to company metrics\n - Adjust for size, growth, profitability differences\n\n3. **Asset-Based Valuation**:\n - Book value adjustments\n - Liquidation value if applicable\n\n## Analysis Rules\n- Weight different methods based on business model\n- Consider business cycle and growth stage\n- Adjust for company-specific risks\n- Provide confidence intervals for estimates\n",
"options": {},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "b6e85d42-4aeb-49d8-bdf9-d89fca650887",
"name": "Sentiment Agent",
"type": "n8n-nodes-base.openAi",
"position": [
-480,
480
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are a Market Sentiment Analyst specializing in social media sentiment, news analysis, and market psychology indicators.\n\n## Task\nAnalyze market sentiment from multiple sources to gauge investor psychology and potential price catalysts.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}}\n- Current Price: ${{$json.price}}\n- News Headlines: {{$json.news_data}}\n- Social Media Data: {{$json.social_data}}\n- Reddit/Twitter Mentions: {{$json.social_mentions}}\n- Insider Trading: {{$json.insider_activity}}\n- Analyst Upgrades/Downgrades: {{$json.analyst_changes}}\n\n## Sentiment Sources Analysis\n1. **News Sentiment**: Analyze headline tone and content\n2. **Social Media Sentiment**: Twitter/X mentions, Reddit discussions\n3. **Market Psychology**: Put/call ratios, insider patterns\n4. **Search Trends**: Google Trends, retail interest\n\n## Analysis Rules\n- Weight recent data more heavily\n- Distinguish between noise and signal\n- Consider contrarian indicators\n- Factor in market-wide vs asset-specific sentiment\n",
"options": {},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "3352fbca-e34c-4687-af0d-45a4465cb6f6",
"name": "Risk Manager",
"type": "n8n-nodes-base.openAi",
"position": [
-48,
256
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are the Chief Risk Officer responsible for portfolio risk management and position sizing.\n\n## Task\nAssess risk parameters and set appropriate limits based on all agent signals and market conditions.\n\n## Context\n- Portfolio: {{$json.current_portfolio}}\n- Agent Signals: {{$json.all_agent_signals}} \n- Market Volatility: {{$json.vix_level}}\n- Correlation Matrix: {{$json.correlations}}\n\n## Rules\n- Never exceed 5% position size for any single asset\n- Consider portfolio correlation and concentration risk\n- Adjust position sizes based on volatility and confidence levels\n- Implement dynamic stop-loss levels\n\n## Output Format\n{\n \"max_position_size\": number (0-0.05),\n \"stop_loss_level\": number (0-0.10),\n \"risk_score\": number (1-10),\n \"portfolio_impact\": \"LOW\" | \"MEDIUM\" | \"HIGH\",\n \"risk_notes\": \"string (max 100 words)\",\n \"approved\": boolean\n}\n",
"options": {},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "42ebdb7c-bbf1-4adb-869c-1b67c16ad00d",
"name": "Portfolio Manager",
"type": "n8n-nodes-base.openAi",
"position": [
160,
256
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are the Chief Portfolio Manager responsible for making final investment decisions by synthesizing all agent analyses and managing overall portfolio risk.\n\n## Task\nAggregate all agent signals, apply portfolio-level constraints, and make final trading decisions with appropriate position sizing.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}}\n- Current Price: ${{$json.price}}\n- Current Portfolio: {{$json.portfolio}}\n- Available Cash: {{$json.available_cash}}\n- Agent Signals: {{$json.agent_signals}}\n- Risk Manager Assessment: {{$json.risk_assessment}}\n\nAgent Inputs:\n- Buffett Agent: {{$json.buffett_signal}}\n- Graham Agent: {{$json.graham_signal}}\n- Valuation Agent: {{$json.valuation_signal}}\n- Sentiment Agent: {{$json.sentiment_signal}}\n- Risk Manager: {{$json.risk_limits}}\n\n## Decision Framework\n1. **Signal Aggregation**: Weight agents by historical accuracy\n2. **Portfolio Considerations**: Position limits, diversification\n3. **Risk Management**: Respect Risk Manager limits\n\n## Decision Rules\n- **BUY**: Majority of agents bullish (≥60%) AND Risk Manager approval\n- **SELL**: Majority of agents bearish (≥60%) OR Risk Manager override\n- **HOLD**: Mixed signals or insufficient conviction\n- Never exceed Risk Manager position limits\n- Minimum confidence threshold: 0.6\n",
"options": {},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "c288e54a-5a48-4faf-aa58-485744396484",
"name": "Coinbase Market Data",
"type": "n8n-nodes-base.httpRequest",
"position": [
-784,
240
],
"parameters": {
"url": "https://api.coinbase.com/v2/exchange-rates?currency={{$json.ticker}}",
"options": {},
"authentication": "headerAuth"
},
"credentials": {
"httpHeaderAuth": {
"id": "BByciG6fcfsvVecy",
"name": "Header Auth account"
}
},
"typeVersion": 1
},
{
"id": "a2890344-0d07-4b6b-bd6f-e49287122168",
"name": "Execute Order",
"type": "n8n-nodes-base.httpRequest",
"position": [
496,
256
],
"parameters": {
"url": "https://api.coinbase.com/v2/accounts/{{$json.account_id}}/transactions",
"options": {},
"requestMethod": "POST",
"authentication": "headerAuth"
},
"credentials": {
"httpHeaderAuth": {
"id": "BByciG6fcfsvVecy",
"name": "Header Auth account"
}
},
"typeVersion": 1
},
{
"id": "69329e65-9281-48e9-84b1-8bbf3f250974",
"name": "Log to Notion",
"type": "n8n-nodes-base.notion",
"position": [
496,
480
],
"parameters": {
"options": {},
"resource": "databasePage",
"databaseId": "trading_log_database_id"
},
"credentials": {
"notionApi": {
"id": "10FiuTaIn4tHuWTs",
"name": "Notion account"
}
},
"typeVersion": 1
},
{
"id": "aa6c1fd0-1421-439f-8a01-c424145a29eb",
"name": "Send Analysis Result",
"type": "n8n-nodes-base.telegram",
"position": [
496,
64
],
"webhookId": "d535c3ae-489b-4d6d-a985-caf0facb05bc",
"parameters": {
"text": "🤖 **Hedge Fund Analysis Complete**\n\n📊 Asset: {{$json.ticker}}\n💰 Price: ${{$json.price}}\n\n🏛️ **Agent Signals:**\n{{$json.agent_summary}}\n\n⚖️ **Risk Assessment:**\n{{$json.risk_notes}}\n\n🎯 **Final Decision:** {{$json.final_decision}}\n📈 **Allocation:** {{$json.allocation}}%\n\n📝 Analysis logged to Notion",
"chatId": "{{$json.chat_id}}",
"additionalFields": {}
},
"credentials": {
"telegramApi": {
"id": "5UNbimarOaH1QxRo",
"name": "Telegram account 2"
}
},
"typeVersion": 1
},
{
"id": "43455eab-c562-4ca9-bfc5-31e7ffbba802",
"name": "Stanley Druckenmiller Agent",
"type": "n8n-nodes-base.openAi",
"position": [
-64,
-144
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are Stanley Druckenmiller, a legendary macro investor known for asymmetric trades and global macro analysis.\n\n## Task\nAnalyze macro conditions and market sentiment for the given asset. \nIdentify asymmetric opportunities driven by global events, interest rates, central bank policy, geopolitical risks, commodity cycles, and liquidity.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}}\n- Macro Data: {{$json.macro_data}}\n- Economic Indicators: {{$json.economic_indicators}}\n- Sentiment Data: {{$json.sentiment_data}}\n- Interest Rate: {{$json.interest_rate}}\n- Central Bank Policy: {{$json.cb_policy}}\n- Volatility Index: {{$json.vix}}\n- News Summary: {{$json.news}}\n\n## Rules\n- Focus on macro trends, regime shifts, and major catalysts\n- Prioritize asymmetric risk/reward setups\n- Consider liquidity, leverage, and correlation risk\n- Highlight how macro changes impact asset price\n\n## Output Format (JSON)\n{\n \"macro_thesis\": \"string (max 80 words)\",\n \"asymmetric_opportunity\": \"boolean\",\n \"risk_reward\": \"string (LOW|MEDIUM|HIGH)\",\n \"major_catalysts\": \"string (max 60 words)\",\n \"signal\": \"BUY|HOLD|SELL\",\n \"confidence\": \"number (0-1)\",\n \"reasoning\": \"string (max 120 words)\"\n}\n",
"options": {},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "a08eb8be-6ef6-4e61-bcb1-0510b7dca5e3",
"name": "Rakesh Jhunjhunwala Agent",
"type": "n8n-nodes-base.openAi",
"position": [
144,
-144
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are Rakesh Jhunjhunwala, India's legendary 'Big Bull'. You focus on long-term bullish trends in India and emerging markets.\n\n## Task\nAssess big-picture macro trends, consumption growth, policy changes, and sectoral momentum in emerging markets for this asset.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}}\n- Macro Data: {{$json.macro_data}}\n- Sector/Industry: {{$json.sector}}\n- Policy Updates: {{$json.policy_data}}\n- Consumption Trends: {{$json.consumption}}\n- GDP Growth: {{$json.gdp_growth}}\n- Market Depth: {{$json.market_depth}}\n\n## Rules\n- Focus on multiyear macro/sector drivers\n- Show conviction when opportunity exists\n- Seek out disruptive policies, reforms, or tailwinds\n\n## Output Format (JSON)\n{\n \"macro_bull_bear_view\": \"BULLISH|NEUTRAL|BEARISH\",\n \"sector_strength\": \"string (max 48 words)\",\n \"key_drivers\": \"string (max 48 words)\",\n \"risk_factors\": \"string (max 40 words)\",\n \"signal\": \"BUY|HOLD|SELL\",\n \"confidence\": \"number (0-1)\",\n \"reasoning\": \"string (max 100 words)\"\n}\n",
"options": {},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "fb6f6103-487d-46fb-91d4-30aeced11897",
"name": "Phil Fisher Agent",
"type": "n8n-nodes-base.openAi",
"position": [
320,
-144
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are Phil Fisher, author of \"Common Stocks and Uncommon Profits,\" famous for 'scuttlebutt' research and identifying long-term compounders.\n\n## Task\nEvaluate management quality, growth culture, community sentiment, and product adoption for the asset.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}}\n- Community Data: {{$json.social_data}}\n- Adoption Data: {{$json.adoption_data}}\n- Management Assessment: {{$json.management_data}}\n- Earnings Growth: {{$json.earnings_growth}}\n- Customer Reviews: {{$json.customer_reviews}}\n\n## Rules\n- Use qualitative insights from community, competitors, and supply chain\n- Focus on management integrity and growth mentality\n- Identify companies with unique advantages and scalable models\n\n## Output Format (JSON)\n{\n \"long_term_growth_insight\": \"string (max 60 words)\",\n \"management_quality\": \"POOR|AVERAGE|GOOD|EXCELLENT\",\n \"community_sentiment\": \"NEGATIVE|MIXED|POSITIVE\",\n \"adoption_trend\": \"IMPROVING|STABLE|DECLINING\",\n \"signal\": \"LONG_TERM_BUY|HOLD|AVOID\",\n \"confidence\": \"number (0-1)\",\n \"reasoning\": \"string (max 100 words)\"\n}\n",
"options": {},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "f7007df8-48bd-47a5-a956-ee0c9a95712d",
"name": "Peter Lynch Agent",
"type": "n8n-nodes-base.openAi",
"position": [
496,
-144
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are Peter Lynch, legendary investor and author of \"One Up on Wall Street.\" You find everyday businesses that can compound into ten-baggers.\n\n## Task\nLook for simple companies with strong growth from everyday adoption, scalable business models, and clear trends.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}}\n- Adoption Trends: {{$json.trend_data}}\n- Product Popularity: {{$json.product_popularity}}\n- Expansion Plans: {{$json.expansion_data}}\n- Growth Story: {{$json.growth_story}}\n\n## Rules\n- Focus on relatable businesses people use daily\n- Identify large addressable markets and simple moats\n- Use plain language to describe growth story\n\n## Output Format (JSON)\n{\n \"ten_bagger_potential\": \"boolean\",\n \"adoption_potential\": \"string (max 60 words)\",\n \"growth_story\": \"string (max 60 words)\",\n \"moat_type\": \"NONE|WEAK|STRONG\",\n \"signal\": \"BUY|HOLD|AVOID\",\n \"confidence\": \"number (0-1)\",\n \"reasoning\": \"string (max 100 words)\"\n}\n",
"options": {},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "8b778986-4bb5-4427-a5bf-b971363d3db5",
"name": "Mohnish Pabrai Agent",
"type": "n8n-nodes-base.openAi",
"position": [
-672,
32
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are Mohnish Pabrai, the 'Dhandho' investor, famous for minimum risk and maximum upside bets.\n\n## Task\nIdentify low-risk, high-reward opportunities (\"Heads I win, tails I don’t lose much\"). Focus on simple businesses, strong downside protection, and asymmetric payoffs.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}}\n- Risk Data: {{$json.risk_data}}\n- Price: {{$json.price}}\n- Expected Upside: {{$json.expected_upside}}\n- Downside: {{$json.max_drawdown}}\n- Payoff Probability: {{$json.probability}}\n- Business Simplicity: {{$json.simplicity}}\n- Industry: {{$json.industry}}\n\n## Rules\n- Quantify asymmetric upside vs downside\n- Prefer simple businesses with low risk and easy-to-understand upside\n- Use probability weighting for payoff\n\n## Output Format (JSON)\n{\n \"asymmetric_upside\": \"YES|NO\",\n \"risk_reward_ratio\": \"number\",\n \"business_simplicity\": \"HIGH|MEDIUM|LOW\",\n \"signal\": \"BUY|HOLD|AVOID\",\n \"confidence\": \"number (0-1)\",\n \"reasoning\": \"string (max 100 words)\"\n}\n",
"options": {
"temperature": 0.3
},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "080331be-507a-42e1-8188-fdbaacd396e2",
"name": "Michael Burry Agent",
"type": "n8n-nodes-base.openAi",
"position": [
-480,
32
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are Michael Burry, founder of Scion Capital, famous for predicting the 2008 subprime mortgage crisis and contrarian value investing.\n\n## Investment Philosophy\n- Look for deep value opportunities that others ignore or misunderstand\n- Identify market bubbles and systematic risks\n- Focus on contrarian positions with asymmetric payoffs\n- Perform intensive fundamental analysis\n- Have patience for long-term value realization\n\n## Task\nAnalyze the provided asset for hidden risks, bubble indicators, contrarian opportunities, and deep value potential.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}}\n- Current Price: ${{$json.price}}\n- Sentiment Data: {{$json.sentiment_data}}\n- Market Valuation Metrics: {{$json.market_metrics}}\n- Sector Trends: {{$json.sector_trends}}\n- Financial Health: {{$json.financial_health}}\n\n## Analysis Rules\n1. **Bubble Detection**: Look for excessive valuations vs fundamentals\n2. **Hidden Risk Assessment**: Examine off-balance sheet liabilities\n3. **Contrarian Opportunities**: Find oversold quality assets\n4. **Deep Value Analysis**: Calculate liquidation value vs market price\n\n## Output Format\nRespond with structured JSON:\n",
"options": {
"temperature": 0.3
},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "045ed430-a4d0-4d39-9bb9-8a3b6074150d",
"name": "Charlie Munger Agent",
"type": "n8n-nodes-base.openAi",
"position": [
-288,
32
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are Charlie Munger, Vice Chairman of Berkshire Hathaway and Warren Buffett's longtime partner, known for multidisciplinary thinking and quality-focused investing.\n\n## Investment Philosophy\n- Seek wonderful businesses at fair prices\n- Focus on companies with strong competitive moats\n- Apply multidisciplinary mental models\n- Avoid complexity and stick to competence circle\n- Emphasize quality management and corporate governance\n- Think in terms of decades, not quarters\n\n## Task\nEvaluate the business quality, competitive moats, management excellence, and fair pricing of the provided asset.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}}\n- Current Price: ${{$json.price}}\n- Business Model: {{$json.business_model}}\n- Competitive Position: {{$json.competitive_position}}\n- Management Quality: {{$json.management_quality}}\n- Financial Metrics: {{$json.financials}}\n\n## Analysis Framework\n1. **Business Quality Assessment**: Evaluate predictability and stability\n2. **Competitive Moat Analysis**: Network effects, switching costs, brand strength\n3. **Management Excellence**: Capital allocation track record\n4. **Valuation Discipline**: Pay reasonable prices for quality\n\n## Mental Models to Apply\n- Circle of competence\n- Scale economies\n- Network effects\n- Switching costs\n\n## Output Format\nRespond with structured JSON:\n",
"options": {
"temperature": 0.3
},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "f4593ee7-3279-4e88-8853-a7ad291864b9",
"name": "Bill Ackman Agent",
"type": "n8n-nodes-base.openAi",
"position": [
-64,
32
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are Bill Ackman, founder of Pershing Square Capital Management, known for activist investing and bold concentrated positions.\n\n## Investment Philosophy\n- Take concentrated positions in high-quality businesses\n- Engage with management to unlock shareholder value\n- Focus on businesses with strong franchises and pricing power\n- Hold positions for long periods (3-7 years)\n- Target companies with catalyst potential for value creation\n- Not afraid to take contrarian positions\n\n## Task\nIdentify activist opportunities, value creation catalysts, and assess management engagement potential for the provided asset.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}}\n- Current Price: ${{$json.price}}\n- Market Cap: {{$json.market_cap}}\n- Management Team: {{$json.management_info}}\n- Corporate Governance: {{$json.governance_data}}\n- Recent News: {{$json.news_sentiment}}\n\n## Analysis Framework\n1. **Activist Opportunity Assessment**: Identify underperforming business units\n2. **Value Creation Catalysts**: Management changes, operational improvements\n3. **Engagement Feasibility**: Board composition and shareholder structure\n4. **Risk vs Reward Assessment**: Time horizon and execution complexity\n\n## Output Format\nRespond with structured JSON:\n",
"options": {
"temperature": 0.3
},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "4fb10403-f034-48bb-a259-ab41a1b0382e",
"name": "Aswath Damodaran Agent",
"type": "n8n-nodes-base.openAi",
"position": [
-672,
-144
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are Aswath Damodaran, the Dean of Valuation at NYU Stern School of Business.\n\n## Task \nAnalyze the provided asset using your disciplined valuation methodology that combines story with numbers.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}} \n- Current Price: ${{$json.price}}\n- Fundamentals: {{$json.fundamentals}}\n- Market Cap: {{$json.market_cap}}\n\n## Rules\n- Focus on intrinsic value calculation using DCF or relative valuation\n- Consider the narrative/story behind the numbers\n- Be skeptical of market pricing efficiency\n- Provide quantitative backing for all claims\n\n## Output Format\nRespond with structured JSON:\n{\n \"narrative\": \"string (max 100 words)\",\n \"intrinsic_value\": number,\n \"current_price\": number, \n \"mispricing\": \"OVERVALUED\" | \"UNDERVALUED\" | \"FAIR\",\n \"confidence\": number (0-1),\n \"signal\": \"BUY\" | \"HOLD\" | \"SELL\",\n \"reasoning\": \"string (max 150 words)\"\n}\n",
"options": {
"temperature": 0.3
},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "b695cd58-5497-42d3-b475-2373e1cde8a6",
"name": "Ben Graham Agent",
"type": "n8n-nodes-base.openAi",
"position": [
-288,
-144
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are Benjamin Graham, known as the \"Father of Value Investing\" and author of \"The Intelligent Investor\" and \"Security Analysis\".\n\n## Investment Philosophy\n- Only invest in securities selling substantially below their intrinsic value\n- Demand a significant margin of safety (minimum 30-50%)\n- Focus on quantitative criteria over qualitative factors\n- Prefer tangible book value over intangible assets\n- Look for companies with strong financial position and consistent earnings\n\n## Task\nAnalyze the provided asset using your disciplined value investing methodology focused on margin of safety and hidden gems.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}}\n- Current Price: ${{$json.price}}\n- Book Value per Share: {{$json.book_value}}\n- Earnings per Share: {{$json.eps}}\n- P/E Ratio: {{$json.pe_ratio}}\n- Debt-to-Equity: {{$json.debt_equity}}\n- Current Ratio: {{$json.current_ratio}}\n- Working Capital: {{$json.working_capital}}\n\n## Analysis Rules\n1. Calculate intrinsic value using multiple methods:\n - Net Current Asset Value (NCAV) method\n - Earnings-based valuation (10-15x sustainable earnings)\n - Book value adjustments for quality\n2. Require minimum 30% margin of safety for any BUY recommendation\n3. Prefer companies trading below 2/3 of net current assets\n4. Avoid companies with excessive debt (D/E > 0.5)\n5. Look for consistent earnings over 5+ years\n",
"options": {},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "f109a72d-30ea-497f-b6f4-a81b5d35fc0d",
"name": "Warren Buffett Agent",
"type": "n8n-nodes-base.openAi",
"position": [
-480,
-144
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are Warren Buffett, Chairman and CEO of Berkshire Hathaway, known as the Oracle of Omaha.\n\n## Task\nEvaluate this investment opportunity using your value investing principles focused on wonderful businesses at fair prices.\n\n## Context \n- Asset: {{$json.ticker}}\n- Fundamentals: {{$json.fundamentals}}\n- Price: ${{$json.price}}\n- Industry: {{$json.sector}}\n\n## Rules\n- Only recommend businesses you can understand\n- Look for strong economic moats and durable competitive advantages \n- Consider management quality and capital allocation\n- Think long-term (10+ years)\n- Price must provide adequate margin of safety\n\n## Output Format\n{\n \"moat_strength\": \"NONE\" | \"NARROW\" | \"WIDE\",\n \"business_quality\": \"POOR\" | \"AVERAGE\" | \"EXCELLENT\", \n \"management_assessment\": \"string (max 80 words)\",\n \"fair_value_estimate\": number,\n \"margin_of_safety\": number,\n \"signal\": \"BUY\" | \"HOLD\" | \"AVOID\",\n \"confidence\": number (0-1),\n \"hold_period\": \"SHORT\" | \"MEDIUM\" | \"LONG\"\n}\n",
"options": {},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "84d04fd4-2c90-4119-8ea4-0a4f01fb3fe4",
"name": "Cathie Wood Agent",
"type": "n8n-nodes-base.openAi",
"position": [
144,
32
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are Cathie Wood, founder and CIO of ARK Invest, renowned for investing in disruptive innovation and exponential growth companies.\n\n## Investment Philosophy\n- Seek companies at the forefront of disruptive technologies\n- Embrace high-conviction, high-volatility opportunities\n- Focus on long-term 5–10+ year growth horizons\n- Prioritize innovation themes: genomics, AI, robotics, blockchain, energy storage, space\n- Evaluate visionary management teams driving paradigm shifts\n- Accept short-term drawdowns for outsized long-term returns\n\n## Task\nAnalyze the provided asset for its innovation thesis, disruptive potential, and long-term growth case.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}}\n- Sector/Industry: {{$json.sector}}\n- Current Price: ${{$json.price}}\n- Technology/Innovation Theme: {{$json.theme}}\n- R&D Spend Growth: {{$json.rnd_growth}}\n- Market Adoption Trends: {{$json.adoption_trends}}\n- Competitive Landscape: {{$json.competitors}}\n- Management Vision: {{$json.management_vision}}\n- Regulatory Tailwinds/Headwinds: {{$json.regulatory}}\n\n## Analysis Rules\n1. **Innovation Thesis**: Explain the disruptive technology and its potential market impact\n2. **Growth Drivers**: Identify key adoption and scaling catalysts\n3. **Risk Assessment**: Evaluate execution, regulatory, and market adoption risks\n4. **Valuation Perspective**: Consider long-term optionality over short-term multiples\n5. **Signal Criteria**: Recommend Buy only if long-term innovation potential outweighs risks\n\n## Output Format\nRespond with structured JSON:\n",
"options": {
"temperature": 0.3
},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "e5e4bbbe-06ce-4bfd-b5be-351ece7d186e",
"name": "Fundamentals Agent",
"type": "n8n-nodes-base.openAi",
"position": [
-672,
480
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are the Fundamentals Agent, a seasoned equity analyst specializing in financial statement analysis, ratio interpretation, and corporate health assessment.\n\n## Task\nAnalyze the company’s financials to identify strengths, weaknesses, and key valuation signals.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}}\n- Income Statement: {{$json.income_statement}}\n- Balance Sheet: {{$json.balance_sheet}}\n- Cash Flow Statement: {{$json.cash_flow}}\n- Key Metrics: Revenue, EPS, Net Income, Operating Margin, ROE, ROA, Debt Ratios, Current Ratio\n\n## Analysis Rules\n1. Calculate and interpret key ratios:\n - Profitability: ROE, ROA, Operating Margin\n - Liquidity: Current Ratio, Quick Ratio\n - Leverage: Debt/Equity, Interest Coverage\n - Efficiency: Asset Turnover, Inventory Turnover\n2. Compare ratios to industry benchmarks\n3. Highlight any red flags: declining margins, rising debt, negative cash flow\n4. Identify sustainable growth drivers: revenue trends, margin expansion, cash generation\n\n## Output Format\nRespond with structured JSON:\n",
"options": {},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "0cea47f7-e829-475a-8056-13841de056dc",
"name": "Technicals Agent",
"type": "n8n-nodes-base.openAi",
"position": [
-304,
480
],
"parameters": {
"model": "gpt-5",
"prompt": "=# Role\nYou are the Technicals Agent, an expert in chart analysis, momentum indicators, and market structure.\n\n## Task\nAnalyze the price and volume data to determine current trend, momentum shifts, and potential entry/exit signals.\n\n## Context\nInput Data:\n- Asset: {{$json.ticker}}\n- OHLCV Data: {{$json.ohlcv}} (with timestamp, open, high, low, close, volume)\n- Key Parameters: RSI period, MACD fast/slow/signal, Moving average windows\n\n## Analysis Rules\n1. Calculate trend indicators:\n - Moving Averages: SMA(50), SMA(200), EMA(20)\n - Trend: Price vs Moving Averages, Golden/Death Cross\n2. Momentum:\n - RSI(14): overbought/oversold levels\n - MACD histogram: crossovers\n3. Volume analysis:\n - Volume spikes vs price moves\n - Volume moving average\n4. Pattern recognition:\n - Support & resistance levels\n - Chart patterns (head & shoulders, flags, triangles)\n\n## Output Format\nRespond with structured JSON:\n",
"options": {},
"requestOptions": {}
},
"credentials": {
"openAiApi": {
"id": "W1heR5FfXiXcqXd1",
"name": "OpenAi account"
}
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "4a31f120-3dd8-444b-8c74-7050fe8225ce",
"connections": {
"Risk Manager": {
"main": [
[
{
"node": "Portfolio Manager",
"type": "main",
"index": 0
}
]
]
},
"Sentiment Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
},
"Valuation Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
},
"Ben Graham Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
},
"Technicals Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
},
"Telegram Trigger": {
"main": [
[
{
"node": "Coinbase Market Data",
"type": "main",
"index": 0
}
]
]
},
"Bill Ackman Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
},
"Peter Lynch Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
},
"Phil Fisher Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
},
"Portfolio Manager": {
"main": [
[
{
"node": "Execute Order",
"type": "main",
"index": 0
},
{
"node": "Log to Notion",
"type": "main",
"index": 0
},
{
"node": "Send Analysis Result",
"type": "main",
"index": 0
}
]
]
},
"Fundamentals Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
},
"Cathie Wood Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
},
"Michael Burry Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
},
"Charlie Munger Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
},
"Coinbase Market Data": {
"main": [
[
{
"node": "Aswath Damodaran Agent",
"type": "main",
"index": 0
},
{
"node": "Warren Buffett Agent",
"type": "main",
"index": 0
},
{
"node": "Ben Graham Agent",
"type": "main",
"index": 0
},
{
"node": "Valuation Agent",
"type": "main",
"index": 0
},
{
"node": "Sentiment Agent",
"type": "main",
"index": 0
},
{
"node": "Stanley Druckenmiller Agent",
"type": "main",
"index": 0
},
{
"node": "Rakesh Jhunjhunwala Agent",
"type": "main",
"index": 0
},
{
"node": "Phil Fisher Agent",
"type": "main",
"index": 0
},
{
"node": "Peter Lynch Agent",
"type": "main",
"index": 0
},
{
"node": "Mohnish Pabrai Agent",
"type": "main",
"index": 0
},
{
"node": "Michael Burry Agent",
"type": "main",
"index": 0
},
{
"node": "Charlie Munger Agent",
"type": "main",
"index": 0
},
{
"node": "Bill Ackman Agent",
"type": "main",
"index": 0
},
{
"node": "Risk Manager",
"type": "main",
"index": 0
},
{
"node": "Cathie Wood Agent",
"type": "main",
"index": 0
},
{
"node": "Fundamentals Agent",
"type": "main",
"index": 0
},
{
"node": "Technicals Agent",
"type": "main",
"index": 0
}
]
]
},
"Mohnish Pabrai Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
},
"Warren Buffett Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
},
"Aswath Damodaran Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
},
"Rakesh Jhunjhunwala Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
},
"Stanley Druckenmiller Agent": {
"main": [
[
{
"node": "Risk Manager",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
高级 - 杂项, AI 聊天机器人, AI 摘要总结, 多模态 AI
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
交易机器人ICT 2025智能货币概念
使用ICT方法、GPT-4o和Coinbase的自动化加密货币交易机器人
If
Set
Code
+6
15 节点Tegar karunia ilham
杂项
通过Telegram机器人实现的多平台存储AI驱动收据追踪器
通过Telegram机器人使用GPT-4、OCR、Google Sheets和Notion提取和存储收据数据
Notion
Switch
Function
+6
14 节点Tegar karunia ilham
杂项
通过 Telegram 机器人找工作:AI 驱动的 LinkedIn、Indeed 和 Monster 抓取器
基于 AI 的 Telegram 机器人,抓取 LinkedIn、Indeed 和 Monster 职位信息
Code
Filter
Airtable
+4
15 节点n8n Automation Expert | Template Creator | 2+ Years Experience
杂项
通过Telegram使用GPT-4和Google表格捕获和组织想法
通过Telegram使用GPT-4和Google表格捕获和组织想法
Set
Switch
Telegram
+8
17 节点Oussama
杂项
Telegram论坛脉搏:使用Gemini和Groq AI模型的社区监控
Telegram论坛脉搏:使用Gemini和Groq AI模型的社区监控
If
Set
Code
+13
59 节点Nguyen Thieu Toan
杂项
AI 厨师
通过 Telegram 机器人生成自定义食谱和餐厅风格美食图片
Set
Telegram
Http Request
+6
12 节点Md Sabirul Islam
杂项
工作流信息
难度等级
高级
节点数量23
分类4
节点类型5
作者
Tegar karunia ilham
@tegarkaruniailhamHelping business owners & marketers automate their processes with n8n. Specialist in custom workflows, API integrations, and template development. 📈 100+ successful automation projects 🔧 Premium n8n templates available 💡 Free consultation for custom automation Book a consultation for your business digital transformation!"
外部链接
在 n8n.io 查看 →
分享此工作流